Durchführungsbeschluss (EU) 2017/1442 der Kommission vom 31.

Juli 2017 über Schlussfolgerungen zu den besten verfügbaren

Techniken (BVT) gemäß der Richtlinie 2010/75/EU des Europäischen

Parlaments und des Rates für Großfeuerungsanlagen

Vom 31. Juli 2017 (ABI. EU Nr. L 212 S. 1)

Die Europäische Kommission —

gestützt auf den Vertrag über die Arbeitsweise der Europäischen Union, gestützt auf die Richtlinie 2010/75/EU des Europäischen Parlaments und des Rates vom 24. November 2010 über Industrieemissionen (integrierte Vermeidung und Verminderung der Umweltverschmutzung)¹, insbesondere auf Artikel 13 Absatz 5,

in Erwägung nachstehender Gründe:

- (1) BVT-Schlussfolgerungen dienen als Referenzdokumente für die Festlegung der Genehmigungsauflagen für unter Kapitel II der Richtlinie 2010/75/EU fallende Anlagen, und die zuständigen Behörden sollten Emissionsgrenzwerte festlegen, mit denen sichergestellt wird, dass die Emissionen unter normalen Betriebsbedingungen nicht über den mit den besten verfügbaren Techniken assoziierten Emissionswerten gemäß den BVT-Schlussfolgerungen liegen.
- (2) Mit dem Beschluss der Kommission vom 16. Mai 2011² wurde ein Forum eingesetzt, dem Vertreter der Mitgliedstaaten, der betreffenden Industriezweige und der Nichtregierungsorganisationen, die sich für den Umweltschutz einsetzen, angehören; dieses Forum legte der Kommission am 20. Oktober 2016 eine Stellungnahme zu dem vorgeschlagenen Inhalt des BVT-Merkblatts für Großfeuerungsanlagen vor. Diese Stellungnahme ist öffentlich zugänglich.
- (3) Die im Anhang dieses Beschlusses enthaltenen BVT-Schlussfolgerungen sind der wichtigste Bestandteil dieses BVT-Merkblatts.
- (4) Die in diesem Beschluss vorgesehenen Maßnahmen entsprechen der Stellung-

¹ ABI. L 334 vom 17.12.2010, S. 17.

² ABI. C 146 vom 17.5.2011, S. 3.

nahme des mit Artikel 75 Absatz 1 der Richtlinie 2010/75/EU eingesetzten Ausschusses —

hat folgenden Beschluss erlassen:

Artikel 1

Die im Anhang enthaltenen Schlussfolgerungen zu den besten verfügbaren Techniken (BVT) für Großfeuerungsanlagen werden angenommen.

Artikel 2

Dieser Beschluss ist an die Mitgliedstaaten gerichtet.

Anhang - Beste verfügbare Techniken (BVT) — Schlussfolgerungen

Anwendungsbereich

Diese BVT-Schlussfolgerungen betreffen folgende, in Anhang I der Richtlinie 2010/75/EU genannte Tätigkeiten:

- 1.1: Verfeuerung von Brennstoffen in Anlagen mit einer Feuerungswärmeleistung von 50 MW oder mehr (nur wenn diese Tätigkeit in Feuerungsanlagen mit einer Feuerungswärmeleistung von 50 MW oder mehr erfolgt).
- 1.4: Vergasung oder Verflüssigung von Kohle oder anderen Brennstoffen in Anlagen mit einer Feuerungswärmeleistung von 20 MW oder mehr (nur wenn diese Tätigkeit unmittelbar mit einer Feuerungsanlage verbunden ist).
- 5.2: Beseitigung oder Verwertung von Abfällen in Anlagen für die Mitverbrennung nicht gefährlicher Abfälle mit einer Kapazität von über 3 t pro Stunde oder in Anlagen für die Mitverbrennung gefährlicher Abfälle mit einer Kapazität von über 10 t pro Tag (nur wenn diese Tätigkeit in einer der unter Ziffer 1.1 erfassten Feuerungsanlagen erfolgt).

Diese BVT-Schlussfolgerungen betreffen insbesondere vorgelagerte und nachgelagerte Tätigkeiten, die unmittelbar mit den vorstehend genannten Tätigkeiten verbunden sind, wie angewandte Emissionsvermeidungs- und -minderungtechniken.

Betrachtet werden feste, flüssige und/oder gasförmige brennbare Stoffe:

- feste Brennstoffe (z.B. Steinkohle, Braunkohle, Torf);
- Biomasse (im Sinne des Artikels 3 Absatz 31 der Richtlinie 2010/75/EU);

- flüssige Brennstoffe (z.B. Schweröl und Gasöl);
- gasförmige Brennstoffe (z.B. Erdgas, wasserstoffhaltiges Gas und Synthesegas);
- industriespezifische Brennstoffe (z.B. Nebenprodukte aus der chemischen Industrie oder der Eisen- und Stahlindustrie);
- Abfälle mit Ausnahme gemischter Siedlungsabfälle im Sinne des Artikels 3
 Nummer 39 und anderer Abfälle gemäß Artikel 42 Absatz 2 Buchstabe a Ziffern ii und iii der Richtlinie 2010/75/EU.

Diese BVT-Schlussfolgerungen gelten nicht für:

- die Verfeuerung von Brennstoffen in Einheiten mit einer Feuerungswärmeleistung von weniger als 15 MW;
- unter die Ausnahmeregelungen gemäß Artikel 33 und Artikel 35 der Richtlinie 2010/75/EU fallende Feuerungsanlagen mit beschränkter Laufzeit bzw. Fernwärmeanlagen, solange die in den jeweiligen Genehmigungen festgelegten Ausnahmen nicht abgelaufen sind, im Hinblick auf die BVT-assoziierten Emissionswerte für die unter die Ausnahmeregelung fallenden Schadstoffe und im Hinblick auf andere Schadstoffe, deren Emissionen mit den durch die Ausnahmeregelung verhinderten technischen Maßnahmen verringert worden wären;
- die Vergasung von Brennstoffen, wenn diese nicht unmittelbar mit der Verfeuerung des entstehenden Synthesegases in Zusammenhang steht;
- die Vergasung von Brennstoffen und die anschließende Verfeuerung von Synthesegas, wenn diese unmittelbar mit der Raffination von Mineralöl und Gas in Zusammenhang stehen;
- die vor- und nachgelagerten T\u00e4tigkeiten, die nicht unmittelbar mit Verbrennungs- oder Vergasungst\u00e4tigkeiten in Zusammenhang stehen;
- die Verfeuerung in Prozessöfen oder Prozessfeuerungen;
- die Verfeuerung in Nachverbrennungsanlagen;
- Abfackeln;
- die Verfeuerung in Ablaugekesseln und Geruchsgaskesseln innerhalb von Anlagen zur Herstellung von Zellstoff und Papier; diese Vorgänge sind Ge-

genstand der BVT-Schlussfolgerungen für die Herstellung von Zellstoff, Papier und Pappe;

- die Verfeuerung von Raffineriebrennstoffen am Standort der Raffinerie; diese ist Gegenstand der BVT-Schlussfolgerungen in Bezug auf das Raffinieren von Mineralöl und Gas;
- die Beseitigung oder Verwertung von Abfällen in:
 - Abfallverbrennungsanlagen (im Sinne des Artikels 3 Nummer 40 der Richtlinie 2010/75/EU),
 - Abfallmitverbrennungsanlagen, in denen mehr als 40 % der freigesetzten Wärme mit gefährlichen Abfällen erzeugt werden,
 - Abfallmitverbrennungsanlagen, in denen nur Abfälle verfeuert werden, es sei denn, diese Abfälle bestehen zumindest teilweise aus Biomasse im Sinne des Artikels 3 Nummer 31 Buchstabe b der Richtlinie 2010/75/EU.

da diese Vorgänge Gegenstand der BVT-Schlussfolgerungen für die Abfallverbrennung sind.

Weitere BVT-Schlussfolgerungen und BVT-Merkblätter, die für die vorliegenden BVT-Schlussfolgerungen relevant sein könnten:

- einheitliche Abwasser- und Abgasbehandlung und einheitliche Abwasserund Abgasmanagementsysteme in der chemischen Industrie (CWW);
- BVT-Merkblätter für die chemische Industrie (LVOC usw.);
- ökonomische und medienübergreifende Effekte (ECM);
- Emissionen aus der Lagerung (EFS);
- Energieeffizienz (ENE);
- industrielle Kühlsysteme (ICS);
- Eisen- und Stahlerzeugung (IS);
- Überwachung der Emissionen aus IE-Anlagen in die Luft und in Gewässer (ROM);
- Herstellung von Zellstoff, Papier und Pappe (PP);
- Raffination von Mineralöl und Gas (REF);
- Abfallverbrennung (WI);

Abfallbehandlung (WT).

Begriffsbestimmungen

Für die Zwecke dieser BVT-Schlussfolgerungen gelten die folgenden Begriffsbestimmungen:

Verwendeter Begriff	Begriffsbestimmung
	Allgemeine Begriffe
Kessel	Jede Feuerungsanlage mit Ausnahme von Motoren, Gasturbinen und Pro-
	zessöfen oder Heizvorrichtungen.
Kombinierter Gas- und	Ein kombinierter Gas- und Dampfturbinenprozess (Kombikraftwerk, GuD-
Dampfturbinenprozess	Anlage) ist eine Feuerungsanlage, bei der zwei thermodynamische Kreis-
(Kombikraftwerk, GuD-	prozesse (d.h. Brayton- oder Rankine-Kreisläufe) zum Einsatz kommen. In
Anlage)	einer GuD-Anlage wird Wärme aus dem Abgas einer (nach dem Brayton-
	Prinzip arbeitenden, der Stromerzeugung dienenden) Gasturbine in einem
	Abwärmedampferzeuger (ADE) in Nutzenergie umgewandelt und zur Er-
	zeugung von Dampf verwendet, der sich dann in einer (nach dem Rankine-
	Prinzip arbeitenden, der Erzeugung zusätzlichen Stroms dienenden)
	Dampfturbine entspannt.
	Für die Zwecke dieser BVT-Schlussfolgerungen zählen Konfigurationen
	sowohl mit als auch ohne Zusatzbefeuerung des HRSG zu den GuD-
	Anlagen.
Feuerungsanlage	Jede technische Vorrichtung, in der Brennstoffe oxidiert werden, um die auf
	diese Weise erzeugte Wärme zu nutzen. Für die Zwecke dieser BVT-
	Schlussfolgerungen gilt eine Kombination aus.
	zwei oder mehr gesonderten Feuerungsanlagen, deren Abgase
	durch einen gemeinsamen Schornstein abgeleitet werden, oder
	 aus gesonderten Feuerungsanlagen, für die am oder nach dem 1.
	Juli 1987 erstmals eine Genehmigung erteilt wurde oder von de-
	ren Betreiber zu diesem Zeitpunkt oder danach ein vollständiger
	Genehmigungsantrag eingereicht wurde und die so konzipiert
	sind, dass ihre Abgase unter Berücksichtigung technischer und
	wirtschaftlicher Faktoren nach dem Ermessen der zuständigen
	Behörde über einen gemeinsamen Schornstein abgeleitet werden
	könnten,
	als eine einzige Feuerungsanlage.
	Für die Berechnung der Feuerungswärmeleistung einer solchen Kombinati-
	on werden die Kapazitäten aller einzelnen Feuerungsanlagen mit einer
	Feuerungswärmeleistung von mindestens 15 MW zusammenaddiert.
Verbrennungseinheit	Eine einzelne Feuerungsanlage.

Die rechtliche Vorsorgeuntersuchung für Unternehmen.

Nutzen Sie unsere gespeicherten Erfahrungen aus 26 Jahren Complianceberatung. Wir vermeiden die Haftung für Organisationsverschulden von Führungskräften. Sie müssen organisatorisch dafür sorgen, dass sie sich selbst und dass sich alle Mitarbeiter des Unternehmens legal verhalten. Dazu lassen sich alle Risiken und Pflichten eines Unternehmens mit unserem System ermitteln, delegieren, monatlich aktualisieren, erfüllen, kontrollieren, digital speichern und für alle jederzeit verfügbar halten. Die Verantwortlichen können digital abfragen, wer, welche Pflicht, an welchem Betriebsteil, wie zu erfüllen hat. Führungskräfte können auf einer Oberaufsichtsmaske mit einem Blick kontrollieren, ob alle Pflichten im Unternehmen erfüllt sind. Systematisch senken wir den Complianceaufwand durch Standardisierung um 60 %. Sachverhalte im Unternehmen wiederholen sich, verursachen gleiche Risiken und lösen gleiche Rechtspflichten zur Risikoabwehr aus. Rechtspflichten werden nur einmal geprüft, verlinkt, gespeichert und immer wieder mehrfach genutzt. Wir sind Rechtsanwälte mit eigenen Informatikern und bieten eine Softwarelösung mit Inhalten und präventiver Rechtsberatung aus einer Hand. Auf Anregungen aus den Unternehmen passen unsere EDV-Spezialisten die Software unseres Compliance-Management-Systems an. Der aktuelle Inhalt unserer Datenbank: 18.000 Rechtsvorschriften von EU, Bund, Ländern und Berufsgenossenschaften, 7.500 Gerichtsurteile, standardisierte Pflichtenkataloge für 45 Branchen und 57.000 vorformulierte Betriebspflichten. 44.000 Unternehmensrisiken sind mit 59.000 Rechtspflichten drei Millionen Mal verlinkt und gespeichert. Auf die Inhalte kommt es an. Je umfangreicher die Datenbank umso geringer ist das Risiko eine Unternehmenspflicht zu übersehen.

Verwendeter Begriff	Begriffsbestimmung
Kontinuierliche Messung	Messung anhand eines automatischen Messsystems, das am Standort fest
	installiert ist.
Direkteinleitung	Einleitung (in einen Vorfluter) an der Stelle, an der die Emission die Anlage
	ohne weitere nachgelagerte Behandlung verlässt.
Rauchgasentschwefe-	Aus einer oder einer Kombination von Abgasreinigungstechniken bestehen-
lungssystem (REA-	des System zur Senkung der SO _X -Emissionen einer Feuerungsanlage.
System)	
Rauchgasentschwefe-	Ein Rauchgasentschwefelungssystem (REA-System), das nicht neu ist.
lungssystem (REA-	
System)-bestehend	
Rauchgasentschwefe-	Ein Rauchgasentschwefelungssystem (REA-System) in einer neuen Anlage
lungssystem (REA-	oder ein REA- System mit mindestens einer Abgasreinigungstechnik, die
System) — neu	nach Veröffentlichung der vorliegenden BVT-Schlussfolgerungen an einer
	bestehenden Anlage eingeführt wurde oder mit der eine in dieser Anlage
	vorhandene Reinigungstechnik vollständig ersetzt wurde.
Gasöl	Jeder aus Erdöl gewonnene Flüssigkraftstoff der KN-Codes 2710 19 25,
	2710 19 29, 2710 19 47, 2710 19 48, 2710 20 17 oder 2710 20 19
	oder jeder aus Erdöl gewonnene Flüssigkraftstoff, von dem bei einer Siede-
	temperatur von 250 °C weniger als 65 Vol% (einschließlich Verlusten) und
	bei einer Siedetemperatur von 350 °C nach der ASTM-D86-Methode min-
	destens 85 Vol% (einschließlich Verlusten) aufgefangen werden.
Schweröl (HFO)	Jeder aus Erdöl gewonnene Flüssigkraftstoff der KN-Codes 2710 19 51 bis
	2710 19 68, 2710 20 31, 2710 20 35, 2710 20 39
	oder jeder aus Erdöl gewonnene Flüssigkraftstoff außer Gasöl, der auf-
	grund seines Destilationsbereichs unter die Schweröle fällt und zur Ver-
	wendung als Kraftstoff bestimmt ist und von dem bei einer Siedetemperatur
	von 250 °C nach der ASTM-D86-Methode weniger als 65 Vol% (ein-
	schließlich Verlusten) aufgefangen werden. Kann die Destillation nicht nach
	der ASTM-D86-Methode bestimmt werden, so wird das Erdölerzeugnis
	ebenfalls als Schweröl eingestuft.
Elektrischer Nettowir-	Verhältnis zwischen der elektrischen Nettoleistung (an der Hochspan-
kungsgrad (Verbren-	nungsseite des Haupttransformators erzeugter Strom abzüglich der impor-
nungseinheit und IGCC)	tierten Energie — z.B. für den Verbrauch von Hilfssystemen) und der zuge-
	führten Brennstoff-/Einsatzstoffenergie (als unterer Heizwert des Brenn-
	/Einsatzstoffs) an der Grenze der Verbrennungseinheit während eines be-
	stimmten Zeitraums.
Mechanischer Nettowir-	Verhältnis zwischen der mechanischen Leistung an der Lastkupplung und
kungsgrad	der thermischen Leistung des Brennstoffs.

Verwendeter Begriff	Begriffsbestimmung
Gesamter Nettobrenn-	Verhältnis zwischen der netto erzeugten Energie (Strom, Warmwasser,
stoffnutzungsgrad (Ver-	Dampf, mechanische Energie abzüglich der importierten elektrischen
brennungseinheit und	und/oder thermischen Energie (z.B. für den Verbrauch von Hilfssystemen)
IGCC)	und der zugeführten Brennstoffenergie (als der untere Heizwert des Brenn-
	stoffs) an der Grenze der Verbrennungseinheit während eines bestimmten
	Zeitraums.
Gesamter Nettobrenn-	Verhältnis zwischen der netto erzeugten Energie (Strom, Heiß- und Warm-
stoffnutzungsgrad (Ver-	wasser, Dampf, erzeugte mechanische Energie und Synthesegas (als der
gasungseinheit)	untere Heizwert des Synthesegases) abzüglich der importierten elektri-
	schen und/oder thermischen Energie (z.B. für den Verbrauch von Hilfssys-
	temen)) und der zugeführten Brenn- und Einsatzstoffenergie (als unterer
	Heizwert des Brenn-/Einsatzstoffs) an der Grenze der Vergasungseinheit
	während eines bestimmten Zeitraums.
Betriebsstunden	Die in Stunden ausgedrückte Zeit, in der sich eine Feuerungsanlage ganz
	oder teilweise in Betrieb befindet und Emissionen in die Luft abgibt, ohne
	die Zeitabschnitte des An- und Abfahrens.
Periodische Messung	Ermittlung einer Messgröße (einer bestimmten, quantitativ zu messenden
	Größe) in festgelegten Zeitabständen.
Anlage — bestehend	Eine Feuerungsanlage, bei der es sich nicht um eine neue Anlage handelt.
Anlage — neu	Eine Feuerungsanlage innerhalb der Gesamtanlage, die nach Veröffentli-
	chung dieser BVT- Schlussfolgerungen erstmals genehmigt wird, oder eine
	nach Veröffentlichung dieser BVT- Schlussfolgerungen auf dem bestehen-
	den Fundament einer alten Feuerungsanlage gänzlich neu errichtete Anla-
	ge.

Verwendeter Begriff	Begriffsbestimmung
Nachverbrennungsanla-	Ein System, das dafür ausgelegt ist, die Abgase durch Verbrennung zu
ge	reinigen, und das nicht als unabhängige Feuerungsanlage betrieben wird,
	wie etwa eine thermische Oxidationsanlage (d.h. eine Restgasverbren-
	nungsanlage), die zur Abscheidung der im Abgas enthaltenen Schadstoffe
	(z.B. VOC) mit oder ohne Rückgewinnung der dabei erzeugten Wärme ein-
	gesetzt wird. Gestufte Verbrennungstechniken, bei denen jede Verbren-
	nungsstufe innerhalb einer gesonderten Kammer stattfindet, die bestimmte
	Prozessmerkmale (wie das Luft-Brennstoff-Verhältnis oder das Tempera-
	turprofil) aufweisen kann, gelten als in den Feuerungsprozess integriert und
	werden nicht als Nachverbrennungsanlagen betrachtet. Ähnlich verhält es
	sich, wenn in Prozessöfen/Prozessfeuerungen oder einem anderen Ver-
	brennungsprozess erzeugte Gase anschließend in einer besonderen Feue-
	rungsanlage oxidiert werden, um ihren energetischen Wert (mit oder ohne
	Einsatz von Zusatzbrennstoff) für die Erzeugung von Strom, Dampf, Heiß-
	oder Warmwasser/Öl oder mechanischer Energie rückzugewinnen; auch in
	diesem Fall gilt die vorgenannte Anlage nicht als Nachverbrennungsanlage.
Überwachungssystem	Ein System zur kontinuierlichen Bestimmung der Emissionskonzentration
zur Vorhersage von	eines Schadstoffs aus einer Emissionsquelle auf Basis seines Bezugs zu
Emissionen (Predictive	einer Reihe charakteristischer, kontinuierlich überwachter Prozessparame-
Emission Monitoring	ter (z.B. Heizgasverbrauch, Luft-Brennstoff-Verhältnis) und von Daten zur
System, PEMS)	Brenn- oder Einsatzstoffqualität (z.B. Schwefelgehalt).
Brennstoffe aus Produk-	Gasförmige und/oder flüssige Nebenprodukte, die von der (petro-
tionsrückständen der)chemischen Industrie erzeugt und in Feuerungsanlagen als nichtkommer-
chemischen Industrie	zielle Brennstoffe verfeuert werden.

Verwendeter Begriff	Begriffsbestimmung
Prozessöfen oder Pro-	Als Prozessöfen oder Prozessfeuerungen gelten als
zessfeuerungen	 Feuerungsanlagen, deren Abgase durch den direkten Kontakt mit dem zu behandelnden Gut bzw. Einsatzmaterial zu dessen ther- mischer Behandlung genutzt werden (z.B. Zement- und Kalköfen, Glasöfen, Asphaltöfen, Trocknungsprozesse, in der (petro-)chemischen Industrie eingesetzte Reaktoren, Öfen zur Verarbei- tung von Eisenmetallen), oder
	 Feuerungsanlagen, deren Strahlungs- und/oder Konduktionswärme durch eine feste Wand ohne dazwischen liegende Wärmeträgerflüssigkeit auf das zu behandelnde Gut bzw. auf das Einsatzmaterial übertragen wird (z.B. Koksöfen, Winderhitzer (Cowper), Öfen oder Reaktoren zur Heizung eines Prozessstroms in der (petro-)chemischen Industrie wie Steamcracker-Öfen, Prozessfeuerungen für die Wiederverdampfung von verflüssigtem Erdgas (LNG) in LNG-Terminals). Prozessöfen oder Prozessfeuerungen mit wirksamer Energierückgewinnung verfügen möglicherweise über ein angeschlossenes Dampfbzw./Stromerzeugungssystem. Solche Systeme gelten als integrale Konstruktionselemente der betreffenden Prozessöfen oder Prozessfeuerungen, die nicht getrennt betrachtet werden können.
Raffineriebrennstoffe	Feste, flüssige oder gasförmige brennbare Stoffe aus den Destillations- und Konversionsstufen der Rohölraffination. Beispiele sind Raffinerieheizgas,
	Synthesegas, Raffinerieöle und Petrolkoks.
Rückstände	Bei den unter dieses Dokument fallenden Tätigkeiten anfallende Stoffe oder Gegenstände wie Abfälle oder Nebenprodukte.
An- und Abfahrzeit	Der nach den Bestimmungen des Durchführungsbeschlusses 2012/249/EU der Kommission (*) berechnete Zeitraum des Anlagenbetriebs.
Einheit — bestehend	Eine Verbrennungseinheit, bei der es sich nicht um eine neue Anlage handelt
Einheit — neu	Eine Verbrennungseinheit innerhalb der Feuerungsanlage, die nach Veröffentlichung dieser BVT-Schlussfolgerungen erstmals genehmigt wird, oder eine nach Veröffentlichung dieser BVT-Schlussfolgerungen auf dem bestehenden Fundament der Feuerungsanlage neu errichtete Einheit.
Gültig (Stundenmittelwert)	Ein Stundenmittelwert wird als gültig betrachtet, wenn am automatischen Messsystem keine Wartung erfolgt und keine Störung vorliegt.
(*) Durchführungsbeschli Zeitabschnitte des An	uss 2012/249/EU der Kommission (*) vom 7. Mai 2012 zur Festlegung der - und Abfahrens von Feuerungsanlagen zum Zwecke der Richtlinie päischen Parlaments und des Rates über Industrieemissionen (ABI. L 123

Verwendeter Begriff	Begriffsbestimmung
vom 9.5.2012, S. 44).	

Verwendeter Begriff	Begriffsbestimmung
	Schadstoffe/Parameter
As	Die Summe von Arsen und seinen Verbindungen, angegeben als As
C ₃	Kohlenwasserstoffe mit einer Kohlenstoffzahl von drei
C ₄ +	Kohlenwasserstoffe mit einer Kohlenstoffzahl von vier oder größer
Cd	Die Summe von Cadmium und seinen Verbindungen, angegeben als Cd
Cd+Tl	Die Summe von Cadmium und Thallium und ihren Verbindungen, angege-
	ben als Cd+Tl
CH ₄	Methan
СО	Kohlenmonoxid
CSB	Chemischer Sauerstoffbedarf. Menge an Sauerstoff, die für die vollständige
	Oxidation organischer Stoffe zu Kohlenstoffdioxid benötigt wird
cos	Kohlenoxidsulfid
Cr	Die Summe von Chrom und seinen Verbindungen, angegeben als Cr
Cu	Die Summe von Kupfer und seinen Verbindungen, angegeben als Cu
Staub	Gesamtstaub (in Luft)
Fluorid	Gelöstes Fluorid, angegeben als F
H ₂ S	Schwefelwasserstoff
HCI	Alle gasförmigen anorganischen Chlorverbindungen, angegeben als HCI
HCN	Cyanwasserstoff
HF	Alle gasförmigen anorganischen Fluorverbindungen, angegeben als HF
Hg	Die Summe von Quecksilber und seinen Verbindungen, angegeben als Hg
N ₂ O	Distickstoffmonoxid (Lachgas)
NH ₃	Ammoniak
Ni	Die Summe von Nickel und seinen Verbindungen, angegeben als Ni
NO _X	Die Summe von Stickstoffmonoxid (NO) und Stickstoffdioxid (NO ₂), ange-
	geben als NO ₂
Pb	Die Summe von Blei und seinen Verbindungen, angegeben als Pb
PCDD/F	Polychlorierte Dibenzo-p-dioxine und -furane
RCG	Konzentration im Rohgas. SO ₂ -Konzentration im Rohgas als Jahresmittel-
	wert (unter den in den allgemeinen Erwägungen beschriebenen Standard-
	bedingungen) am Eingang des Systems zur Senkung der SO _X -Emissionen,
	bezogen auf einen Sauerstoffgehalt von 6 Vol% O ₂

Die rechtliche Vorsorgeuntersuchung für Unternehmen.

Nutzen Sie unsere gespeicherten Erfahrungen aus 26 Jahren Complianceberatung. Wir vermeiden die Haftung für Organisationsverschulden von Führungskräften. Sie müssen organisatorisch dafür sorgen, dass sie sich selbst und dass sich alle Mitarbeiter des Unternehmens legal verhalten. Dazu lassen sich alle Risiken und Pflichten eines Unternehmens mit unserem System ermitteln, delegieren, monatlich aktualisieren, erfüllen, kontrollieren, digital speichern und für alle jederzeit verfügbar halten. Die Verantwortlichen können digital abfragen, wer, welche Pflicht, an welchem Betriebsteil, wie zu erfüllen hat. Führungskräfte können auf einer Oberaufsichtsmaske mit einem Blick kontrollieren, ob alle Pflichten im Unternehmen erfüllt sind. Systematisch senken wir den Complianceaufwand durch Standardisierung um 60 %. Sachverhalte im Unternehmen wiederholen sich, verursachen gleiche Risiken und lösen gleiche Rechtspflichten zur Risikoabwehr aus. Rechtspflichten werden nur einmal geprüft, verlinkt, gespeichert und immer wieder mehrfach genutzt. Wir sind Rechtsanwälte mit eigenen Informatikern und bieten eine Softwarelösung mit Inhalten und präventiver Rechtsberatung aus einer Hand. Auf Anregungen aus den Unternehmen passen unsere EDV-Spezialisten die Software unseres Compliance-Management-Systems an. Der aktuelle Inhalt unserer Datenbank: 18.000 Rechtsvorschriften von EU, Bund, Ländern und Berufsgenossenschaften, 7.500 Gerichtsurteile, standardisierte Pflichtenkataloge für 45 Branchen und 57.000 vorformulierte Betriebspflichten. 44.000 Unternehmensrisiken sind mit 59.000 Rechtspflichten drei Millionen Mal verlinkt und gespeichert. Auf die Inhalte kommt es an. Je umfangreicher die Datenbank umso geringer ist das Risiko eine Unternehmenspflicht zu übersehen.

Verwendeter Begriff	Begriffsbestimmung
Sb+As+Pb+Cr+Co+Cu+	Die Summe von Antimon, Arsen, Blei, Chrom, Kobalt, Kupfer, Mangan,
Mn+Ni+V	Nickel, Vanadium und ihren Verbindungen, angegeben als
	Sb+As+Pb+Cr+Co+Cu+Mn+Ni+V
SO ₂	Schwefeldioxid
SO ₃	Schwefeltrioxid
SO _X	Die Summe von Schwefeldioxid (SO ₂) und Schwefeltrioxid (SO ₃), angege-
	ben als SO ₂
Sulfat	Gelöstes Sulfat, angegeben als ${\rm SO_4}^{2^-}$
Sulfid, leicht freisetzbar	Die Summe gelösten Sulfids und solcher nicht gelösten Sulfide, die im sau-
	ren Bereich leicht freisetzbar sind, angegeben als S ²⁻
Sulfit	Gelöstes Sulfit, angegeben als SO ₃ ²⁻
TOC	Gesamter organisch gebundener Kohlenstoff, angegeben als C (in Wasser)
TSS	Gesamte suspendierte Feststoffe. Massenkonzentration aller suspendierten
	Feststoffe (in Wasser), gemessen mittels Filtrierung durch Glasfaserfilter
	und Gravimetrie
TVOC	Gesamte flüchtige organische Stoffe, angegeben als C (in Luft)
Zn	Die Summe von Zink und seinen Verbindungen, angegeben als Zn

Abkürzungen

Für die Zwecke dieser BVT-Schlussfolgerungen gelten die folgenden Abkürzungen:

Akronym	Begriffsbestimmung
ASU	Druckluftversorgungseinheit
GuD	Kombinierter Gas- und Dampfturbinenprozess mit oder ohne Zusatzbefeue-
	rung
ZWS	Zirkulierende Wirbelschicht
KWK	Kraft-Wärme-Kopplung
COG	Kokereigas
cos	Kohlenoxidsulfit
DLN	NO _X -arme Trockenbrenner
DSI	Kanal-Sorptionsmitteleinspritzung
ESP	Elektrofilter
WSF	Wirbelschichtfeuerung
REA	Rauchgasentschwefelung
HFO	Schweröl
HRSG	Abhitzedampferzeuger
IGCC	Kombinierter Gas- und Dampftturbinen-Prozess mit integrierter Vergasung
LHV	Unterer Heizwert

Akronym	Begriffsbestimmung
LNB	NO _x -arme Brenner
LNG	Verflüssigtes Erdgas
OCGT	Gasturbine mit offenem Kreislauf
OTNOC	Betriebszustände außerhalb des Normalbetriebs
PC	Staubfeuerung
PEMS	Überwachungssystem zur Vorhersage von Emissionen
SCR	Selektive katalytische Reduktion
SDA	Sprühabsorber, Trockenverfahren
SNCR	Selektive nichtkatalytische Reduktion

Allgemeine Erwägungen

Beste verfügbare Techniken

Die in diesen BVT-Schlussfolgerungen genannten und beschriebenen Techniken sind weder normativ noch erschöpfend. Es können andere Techniken eingesetzt werden, die mindestens ein gleiches Umweltschutzniveau gewährleisten.

Wenn nicht anders angegeben, sind diese BVT-Schlussfolgerungen allgemein anwendbar.

Mit den besten verfügbaren Techniken assoziierte Emissionswerte ("BVT-assoziierte Emissionswerte")

Werden mit den besten verfügbaren Techniken assoziierte Emissionswerte ("BVT-assoziierte Emissionswerte") für unterschiedliche Mittelungszeiträume angegeben, müssen alle genannten BVT-assoziierten Emissionswerte eingehalten werden.

Die in den vorliegenden BVT-Schlussfolgerungen dargelegten BVT-assoziierten Emissionswerte sind dann nicht auf weniger als 500 Stunden jährlich in Betrieb befindliche, mit Flüssigbrennstoff oder Gas befeuerte Turbinen und Motoren für den Notbetrieb anzuwenden, wenn ein solcher Notbetrieb nicht mit der Einhaltung der BVT-assoziierten Emissionswerte vereinbar ist.

BVT-assoziierte Emissionswerte für Emissionen in die Luft

Die in diesen BVT-Schlussfolgerungen angegebenen, mit den besten verfügbaren Techniken assoziierten Emissionswerte ("BVT-assoziierte Emissionswerte") für Emissionen in die Luft beziehen sich auf Konzentrationen, die als Masse emittierter Stoffe pro Volumen Abgas unter folgenden Standardbedingungen ausgedrückt werden: trockenes Gas bei einer Temperatur von 273,15 K und einem Druck von 101,3 kPa, angegeben in den Maßeinheiten mg/Nm³, µg/Nm³ oder µg I-TEQ/Nm³.

Die Überwachung der BVT-assoziierten Emissionswerte für Emissionen in die Luft ist in der BVT-Schlussfolgerung 4 festgelegt.

Die in diesem Dokument enthaltenen BVT-assoziierten Emissionswerte beziehen sich auf die in der nachfolgenden Tabelle angegebenen Werte für den Sauerstoffgehalt.

Bezugssauer- stoffgehalt (O _R)
6 Vol%
3 Vol%
15 Vol%

Die Gleichung zur Berechnung der Emissionskonzentration beim Bezugssauerstoffgehalt lautet:

$$E_R = \frac{21 - O_R}{21 - O_M} \times E_M$$

Dabei ist:

E_B: Emissionskonzentration bezogen auf den Bezugssauerstoffgehalt O_B;

O_B: Bezugssauerstoffgehalt in Vol.- %;

E_м: gemessene Emissionskonzentration;

O_м: gemessener Sauerstoffgehalt in Vol.- %.

Für Mittelungszeiträume gelten die folgenden Definitionen:

Mittelungszeitraum	Begriffsbestimmung
Tagesmittelwert	Mittelwert gültiger, durch kontinuierliche Messungen ermittelter Stundenmit-
	telwerte über einen Zeitraum von 24 Stunden
Jahresmittelwert	Mittelwert gültiger, durch kontinuierliche Messungen ermittelter Stundenmit-
	telwerte über den Zeitraum von einem Jahr
Mittelwert über den Zeit-	Mittelwert von drei aufeinanderfolgenden Messungen von jeweils mindes-
raum der Probenahme	tens 30 Minuten (1)
Mittelwert der in einem	Mittelwert der im Verlauf eines Jahres periodischer Messungen erhobenen
Jahr gewonnenen Pro-	Werte, wobei die Messungen mit der für jeden einzelnen Parameter festge-
ben	legten Überwachungshäufigkeit erfolgten

⁽¹⁾ Für Parameter, bei denen aufgrund von Einschränkungen bei der Probennahme oder Analyse Messungen im 30-Minuten-Takt nicht geeignet sind, wird ein geeigneter Probennahmezeitraum eingesetzt. Für PCDD/F wird ein Probennahmezeitraum von sechs bis acht Stunden genutzt.

BVT-assoziierte Emissionswerte für Emissionen in Gewässer

In diesen BVT-Schlussfolgerungen genannte, mit den besten verfügbaren Techniken assoziierte Emissionswerte ("BVT-assoziierte Emissionswerte") für Emissionen in Gewässer beziehen sich auf Konzentrationen, die als Masse emittierter Stoff pro Volumen Wasser ausgedrückt und in µg/l, mg/l, oder g/l angegeben werden. Die BVT-assoziierten Emissionswerte beziehen sich auf Tagesmittelwerte, d.h. durchflussproportionale Mischproben über jeweils 24 Stunden. Zeitproportionale Mischproben können unter der Voraussetzung verwendet werden, dass eine ausreichende Durchflussstabilität nachgewiesen werden kann.

Die mit den BVT-assoziierten Emissionswerten verbundene Überwachung von Emissionen in die Gewässer ist in der BVT-Schlussfolgerung 5 festgelegt.

Mit den besten verfügbaren Techniken assoziierte Energieeffizienzwerte ("BVT-assoziierte Energieeffizienzwerte")

Ein mit den besten verfügbaren Techniken assoziierter Energieeffizienzwert ("BVT-assoziierter Energieeffizienzwert") bezieht sich auf das Verhältnis zwischen dem Nettoenergieertrag der Verbrennungseinheit und der eingesetzten Energie aus Brennund Einsatzstoffen bei der gegenwärtigen Konstruktionsweise der Einheit. Der Nettoenergieertrag wird an den Grenzen der Feuerungs-, Vergasungs- oder IGCC-Anlage unter Einschluss von Hilfssystemen (z.B. Systemen zur Abgasbehandlung) im Volllastbetrieb der Anlage bestimmt.

Bei Kraft-Wärme-Kopplungsanlagen (KWK):

- bezieht sich der BVT-assoziierte Energieeffizienzwert der Gesamtbrennstoffausnutzung auf die unter Volllast betriebene, in erster Linie auf die Maximierung der Wärmeversorgung und in zweiter Linie auf die Maximierung des erzeugbaren, verbleibenden Stroms eingestellte Verbrennungseinheit;
- bezieht sich der BVT-assoziierte Energieeffizienzwert des elektrischen Nettowirkungsgrades auf Verbrennungseinheiten, die nur Strom unter Volllast erzeugen.

BVT-assoziierte Energieeffizienzwerte werden als Prozentsatz ausgedrückt. Die eingesetzte Energie aus Brenn- und Einsatzstoffen wird bezogen auf den unteren Heizwert (LHV) angegeben.

Die mit BVT-assoziierten Energieeffizienzwerten verbundene Überwachung ist in der BVT-Schlussfolgerung 2 festgelegt.

Einstufung von Feuerungsanlagen/Verbrennungseinheiten nach ihrer Feuerungswärmeleistung

Für die Zwecke dieser BVT-Schlussfolgerungen ist in Fällen, in denen eine Bandbreite an Werten für die Feuerungswärmeleistung angegeben wird, dies als "gleich oder größer als das untere Ende der Bandbreite und kleiner als das obere Ende der Bandbreite" zu lesen. Beispielsweise ist die Anlagenkategorie 100-300 MW_{th} wie folgt auszulegen: Feuerungsanlagen mit einer Feuerungswärmeleistung gleich oder größer als 100 MW und kleiner als 300 MW.

Ist ein Teil einer Feuerungsanlage, der Abgase über einen oder mehrere gesonderte Abgasabzüge in einen gemeinsamen Schornstein ableitet, höchstens 1 500 Stunden jährlich in Betrieb, kann dieser Teil der Anlage für die Zwecke dieser BVT-Schlussfolgerungen gesondert betrachtet werden. Hinsichtlich aller Teile der Anlage gelten die BVT-assoziierten Emissionswerte in Bezug auf die Feuerungswärmeleistung der Anlage. In Fällen dieser Art werden die durch jeden dieser Abgasabzüge abgeleiteten Emissionen gesondert überwacht.

1. Allgemeine BVT-Schlussfolgerungen

Die in den Abschnitten 2 bis 7 beschriebenen, brennstoffspezifischen BVT-Schlussfolgerungen gelten zusätzlich zu den in diesem Abschnitt genannten allgemeinen BVT-Schlussfolgerungen.

Die rechtliche Vorsorgeuntersuchung für Unternehmen.

Nutzen Sie unsere gespeicherten Erfahrungen aus 26 Jahren Complianceberatung. Wir vermeiden die Haftung für Organisationsverschulden von Führungskräften. Sie müssen organisatorisch dafür sorgen, dass sie sich selbst und dass sich alle Mitarbeiter des Unternehmens legal verhalten. Dazu lassen sich alle Risiken und Pflichten eines Unternehmens mit unserem System ermitteln, delegieren, monatlich aktualisieren, erfüllen, kontrollieren, digital speichern und für alle jederzeit verfügbar halten. Die Verantwortlichen können digital abfragen, wer, welche Pflicht, an welchem Betriebsteil, wie zu erfüllen hat. Führungskräfte können auf einer Oberaufsichtsmaske mit einem Blick kontrollieren, ob alle Pflichten im Unternehmen erfüllt sind. Systematisch senken wir den Complianceaufwand durch Standardisierung um 60 %. Sachverhalte im Unternehmen wiederholen sich, verursachen gleiche Risiken und lösen gleiche Rechtspflichten zur Risikoabwehr aus. Rechtspflichten werden nur einmal geprüft, verlinkt, gespeichert und immer wieder mehrfach genutzt. Wir sind Rechtsanwälte mit eigenen Informatikern und bieten eine Softwarelösung mit Inhalten und präventiver Rechtsberatung aus einer Hand. Auf Anregungen aus den Unternehmen passen unsere EDV-Spezialisten die Software unseres Compliance-Management-Systems an. Der aktuelle Inhalt unserer Datenbank: 18.000 Rechtsvorschriften von EU, Bund, Ländern und Berufsgenossenschaften, 7.500 Gerichtsurteile, standardisierte Pflichtenkataloge für 45 Branchen und 57.000 vorformulierte Betriebspflichten. 44.000 Unternehmensrisiken sind mit 59.000 Rechtspflichten drei Millionen Mal verlinkt und gespeichert. Auf die Inhalte kommt es an. Je umfangreicher die Datenbank umso geringer ist das Risiko eine Unternehmenspflicht zu übersehen.

1.1. Umweltmanagementsysteme

BVT 1 Zum Zweck der Verbesserung der allgemeinen Umweltleistung besteht die BVT in der Einführung und

Anwendung eines Umweltmanagementsystems (UMS), das sich durch sämtliche folgenden Merkmale

auszeichnet:

- i) besonderes Engagement der Führungskräfte, auch auf leitender Ebene;
- ii) Festlegung einer Umweltstrategie seitens der Führungskräfte, die eine kontinuierliche Verbesserung der Umweltleistung der Anlage beinhaltet;
- iii) Planung und Umsetzung der erforderlichen Verfahren, Ziele und Vorgaben, einschließlich finanzieller Planung und Investitionen;
- iv) Durchführung von Verfahren unter besonderer Berücksichtigung der folgenden Punkte:
 - a) Struktur und Zuständigkeiten,
 - b) Arbeitskräfteanwerbung, Schulung, Sensibilisierung und Kompetenz,
 - c) Kommunikation,
 - d) Einbeziehung der Arbeitnehmer,
 - e) Dokumentation,
 - f) wirkungsvolle Prozessregelung,
 - g) geplante, regelmäßige Instandhaltungsprogramme,
 - h) Bereitschaftsplanung und Maßnahmen für Notfallsituationen,
 - i) Gewährleistung der Einhaltung von Umweltschutzvorschriften;
- v) Leistungskontrolle und Korrekturmaßnahmen unter besonderer Berücksichtigung der folgenden Punkte:
 - überwachung und Messung (siehe auch den Referenzbericht der GFS über die Überwachung der Emissionen aus IED-Anlagen in die Luft und in Gewässer (ergebnisorientiertes Monitoring — ROM)),
 - b) Korrektur- und Vorbeugungsmaßnahmen,
 - c) Führen von Aufzeichnungen,

- d) (soweit praktikabel) unabhängige interne und externe Prüfung, um festzustellen, ob mit dem Umweltmanagementsystem die vorgesehenen Regelungen eingehalten werden und ob das UMS ordnungsgemäß eingeführt wurde und angewandt wird;
- vi) Überprüfung des UMS und seiner fortgesetzten Eignung, Angemessenheit und Wirksamkeit durch die leitenden Führungskräfte;
- vii) kontinuierliche Entwicklung umweltverträglicherer Technologien;
- viii) Berücksichtigung der Umweltauswirkungen einer späteren Stilllegung der Anlage schon bei der Konzeption einer neuen Anlage sowie während der gesamten Nutzungsdauer. Dies schließt Folgendes ein:
 - a) Vermeidung von Untertagebauten,
 - b) Einbeziehung von Merkmalen, die die Demontage erleichtern,
 - c) Wahl leicht zu dekontaminierender Oberflächenvergütungen,
 - d) Einsatz von Gerätekonfigurationen, mit denen der Einschluss von Chemikalien auf ein Minimum reduziert und das Ablassen oder Reinigen erleichtert wird,
 - e) Konstruktion flexibler, in sich geschlossener Geräte, die eine stufenweise Schließung ermöglichen;
 - f) nach Möglichkeit Einsatz biologisch abbaubarer und recyclingfähiger Materialien,
- ix) regelmäßige Durchführung von Benchmarkings auf Branchenebene.

 In der hier betroffenen Branche kommt zudem der Betrachtung folgender, in den relevanten BVT beschriebener Merkmale des UMS besondere Bedeutung zu:
- x) Programme zur Qualitätssicherung und Qualitätskontrolle, um sicherzustellen, dass die Merkmale aller Brennstoffe vollständig bestimmt und kontrolliert werden (siehe BVT 9);
- xi) Managementplan zur Reduzierung der Emissionen in die Luft und/oder in Gewässer während Betriebszuständen außerhalb des Normalbetriebs, unter anderem Zeitabschnitten des An- und Abfahrens (siehe BVT 10 und BVT 11);

- xii) Abfallbewirtschaftungsplan, um sicherzustellen, dass Abfall vermieden oder zur Wiederverwendung, Wiederverwertung und/oder anderweitigen Rückgewinnung vorbereitet wird, unter Einschluss der in den BVT 16 angegebenen Techniken;
- xiii) systematische Methode zur Ermittlung und Bewältigung potenzieller, ungesteuerter und/oder ungeplanter Emissionen in die Umwelt, insbesondere:
 - a) Emissionen in Boden und Grundwasser bei der Handhabung und Lagerung von Brennstoffen, Zusatzstoffen, Nebenprodukten oder Abfällen,
 - b) mit der Selbsterhitzung und/oder Selbstentzündung von Brennstoff bei der Lagerung und Handhabung zusammenhängende Emissionen;
- xiv) ein Staubmanagementplan zur Vermeidung oder, sofern dies nicht praktikabel ist, zur Reduzierung diffuser, beim Laden, Entladen, Lagern und/oder Handhaben von Brenn-, Rest- und Zusatzstoffen entstehender Emissionen;
- ein Lärmmanagementplan, wenn bei Schutzgütern eine Lärmbelästigung erwartet wird oder eintritt; dies schließt Folgendes ein:
 - ein Protokoll für die Durchführung von Lärmüberwachungsmaßnahmen an der Anlagengrenze,
 - b) ein Programm zur Lärmreduzierung,
 - ein Protokoll für die Reaktion auf Lärmereignisse, das angemessene Maßnahmen und Zeitpläne umfasst,
 - d) eine Überprüfung früherer Lärmereignisse, Korrekturmaßnahmen und Verbreitung von Kenntnissen über Lärmereignisse bei den Betroffenen;
- xvi) ein Geruchsmanagementplan für die Verbrennung, Vergasung oder Mitverbrennung übelriechender Stoffe; dies schließt Folgendes ein:
 - a) ein Protokoll für die Durchführung Geruchsüberwachungsmaßnahmen,
 - gegebenenfalls ein Geruchsbeseitigungsprogramm zur Ermittlung, Beseitigung oder Reduzierung der Geruchsemissionen,
 - c) ein Protokoll zur Erfassung von Geruchsereignissen sowie angemessene Maßnahmen und Zeitpläne,
 - d) eine Überprüfung früherer Geruchsereignisse, Korrekturmaßnahmen und Verbreitung von Kenntnissen über Geruchsereignisse bei den Betroffenen.

Ergibt sich im Laufe einer Bewertung, dass einige der unter Ziffer x bis xvi aufgeführten Elemente nicht erforderlich sind, wird die betreffende Entscheidung mit Begründung protokolliert.

Anwendbarkeit

Der Anwendungsbereich (z.B. die Detailtiefe) und die Art des Umweltmanagementsystems (z.B. standardisiert oder nichtstandardisiert) hängen in der Regel mit der Art, Größe und Komplexität der Anlage sowie mit dem Ausmaß ihrer potenziellen Umweltauswirkungen zusammen.

1.2. Überwachung

BVT 2 Die BVT besteht in der Bestimmung des elektrischen Nettowirkungsgrades und/oder des gesamten Nettobrennstoffnutzungsgrades und/oder des mechanischen Nettowirkungsgrades der Vergasungs-, IGCC- und/oder Verbrennungseinheiten mittels Durchführung eines Leistungstests unter Volllast³, der nach EN- Normen nach der Inbetriebnahme der Anlage und jeder Änderung erfolgt, die signifikante Auswirkungen auf den elektrischen Nettowirkungsgrad und/oder den gesamten Nettobrennstoffnutzungsgrad und/oder den mechanischen Nettowirkungsgrad der Verbrennungseinheit haben könnte. Wenn keine EN-Normen verfügbar sind, besteht die BVT in der Anwendung von ISO-Normen und/oder von nationalen oder sonstigen internationalen Normen, die die Bereitstellung von Daten gleichwertiger wissenschaftlicher Qualität gewährleisten.

BVT 3 Die BVT besteht in der Überwachung wichtiger, für Emissionen in die Luft und in Gewässer relevanter Prozessparameter unter Einschluss der im Folgenden aufgeführten Parameter.

Strom	Parameter	Überwachung
Abgas	Volumenstrom	Periodische oder kontinuierliche Be-
		stimmung
	Sauerstoffgehalt, Temperatur und	Periodische oder kontinuierliche Mes-
	Druck	sung
	Wasserdampfgehalt (1)	

³ Kann bei KWK-Anlagen aus technischen Gründen beim Leistungstest kein Vollastbetrieb in der Wärmeversorgung gefahren werden, kann der Test durch eine Berechnung anhand von Volllastparametern ergänzt oder ersetzt werden.

Strom	Parameter	Überwachung			
Abwasser aus der	Volumenstrom, pH-Wert und Tempe-	Kontinuierliche Messung			
Rauchgasbehandlung	ratur				
(1) Die kontinuierliche Messung des Wasserdampfgehalts des Abgases ist nicht erforderlich, wenn					
das als Probe entnommene Abgas vor der Analyse getrocknet wird.					

BVT 4 Die BVT besteht in der Überwachung von Emissionen in die Luft in der im Folgenden angegebenen Mindesthäufigkeit und unter Einhaltung maßgeblicher EN-Normen. Wenn keine EN-Normen verfügbar sind, besteht die BVT in der Anwendung von ISO-Normen und/oder von nationalen oder sonstigen internationalen Normen, die die Bereitstellung von Daten gleichwertiger wissenschaftlicher Qualität gewährleisten.

Stoff/ Parameter	Brennstoff/Prozess/Art der Feuerungsanlage - Wenn SCR und/oder	Feuerungs- wärmeleis- tung der Feue- rungsanla- ge Alle Größen	Norm(en) (¹)	Mindesthäufigkeit der Überwachung (²) Kontinuierlich (³) (⁴)	Überwa- chung verbun- den mit
14113	SNCR eingesetzt werden	Tale Crosserr	EN-normen		DVII
NO _X	 Stein- und/oder Braunkohle einschließlich Abfallmitverbrennung Feste Biomasse und/oder Torf einschließlich Abfallmitverbrennung - HFOund/oder gasölbefeuerte Kessel und Motoren Gasölbetriebene Gasturbinen Erdgasbefeuerte Kessel, Motoren und Turbinen Prozessgase aus der Eisen- und Stahlherstellung Prozessbrennstoffe aus der chemischen Industrie IGCC-Anlagen Feuerungsanlagen auf 	Alle Größen	Generische EN-normen	Kontinuierlich (³) (⁵)	BVT 20 BVT 24 BVT 28 BVT 32 BVT 37 BVT 41 BVT 42 BVT 43 BVT 47 BVT 48 BVT 56 BVT 64 BVT 65 BVT 73

Die rechtliche Vorsorgeuntersuchung für Unternehmen.

Nutzen Sie unsere gespeicherten Erfahrungen aus 26 Jahren Complianceberatung. Wir vermeiden die Haftung für Organisationsverschulden von Führungskräften. Sie müssen organisatorisch dafür sorgen, dass sie sich selbst und dass sich alle Mitarbeiter des Unternehmens legal verhalten. Dazu lassen sich alle Risiken und Pflichten eines Unternehmens mit unserem System ermitteln, delegieren, monatlich aktualisieren, erfüllen, kontrollieren, digital speichern und für alle jederzeit verfügbar halten. Die Verantwortlichen können digital abfragen, wer, welche Pflicht, an welchem Betriebsteil, wie zu erfüllen hat. Führungskräfte können auf einer Oberaufsichtsmaske mit einem Blick kontrollieren, ob alle Pflichten im Unternehmen erfüllt sind. Systematisch senken wir den Complianceaufwand durch Standardisierung um 60 %. Sachverhalte im Unternehmen wiederholen sich, verursachen gleiche Risiken und lösen gleiche Rechtspflichten zur Risikoabwehr aus. Rechtspflichten werden nur einmal geprüft, verlinkt, gespeichert und immer wieder mehrfach genutzt. Wir sind Rechtsanwälte mit eigenen Informatikern und bieten eine Softwarelösung mit Inhalten und präventiver Rechtsberatung aus einer Hand. Auf Anregungen aus den Unternehmen passen unsere EDV-Spezialisten die Software unseres Compliance-Management-Systems an. Der aktuelle Inhalt unserer Datenbank: 18.000 Rechtsvorschriften von EU, Bund, Ländern und Berufsgenossenschaften, 7.500 Gerichtsurteile, standardisierte Pflichtenkataloge für 45 Branchen und 57.000 vorformulierte Betriebspflichten. 44.000 Unternehmensrisiken sind mit 59.000 Rechtspflichten drei Millionen Mal verlinkt und gespeichert. Auf die Inhalte kommt es an. Je umfangreicher die Datenbank umso geringer ist das Risiko eine Unternehmenspflicht zu übersehen.

Stoff/ Parameter	Brennstoff/Prozess/Art der Feuerungsanlage	Feuerungs- wärmeleis- tung der Feue- rungsanla- ge	Norm(en)	Mindesthäufigkeit der Überwachung (²)	Überwa- chung verbun- den mit
N ₂ O	 Stein- und/oder Braunkohle in Kesseln mit zirkulierender Wirbelschichtfeuerung Feste Biomasse und/oder Torf in Kesseln mit zirkulierender Wirbelschichtfeuerung 	Alle Größen	EN 21258	Einmal jährlich (⁷)	BVT 20 BVT 24
CO	 Stein- und/oder Braunkohle einschließlich Abfallmitverbrennung Feste Biomasse und/oder Torf einschließlich Abfallmitverbrennung - HFO-und/oder gasölbefeuerte Kessel und Motoren Gasölbetriebene Gasturbinen Erdgasbefeuerte Kessel, Motoren und Turbinen Prozessgase aus der Eisen- und Stahlherstellung Brennstoffe aus Produktionsrückständen der chemischen Industrie IGCC-Anlagen 	Alle Größen	Generische EN-normen	Kontinuierlich (³) (⁵)	BVT 20 BVT 24 BVT 28 BVT 33 BVT 38 BVT 44 BVT 49 BVT 56 BVT 64 BVT 65 BVT 73
SO ₂	 Feuerungsanlagen auf Offshore-Bohrinseln Stein- und/oder Braunkohle einschließlich Abfallmitverbrennung Feste Biomasse und/oder 	Alle Größen Alle Größen	EN 15058 Generische EN-Normen und EN 14791		BVT 54 BVT 21 BVT 25 BVT 29
	Torf einschließlich Abfall- mitverbrennung - HFO-		14/31		BVT 34 BVT 39 BVT 50

Stoff/ Parameter	Brennstoff/Prozess/Art der Feuerungsanlage	Feuerungs- wärmeleis- tung der Feue- rungsanla- ge	Norm(en) (¹)	Mindesthäufigkeit der Überwachung (²)	Überwa- chung verbun- den mit
	und/oder gasölbefeuerte Kessel HFO- und/oder gasölbetriebene Motoren Gasölbetriebene Gasturbinen Prozessgase aus der Eisen- und Stahlherstellung Brennstoffe aus produktionsrückständen der chemischen Industrie in Kesseln IGCC-Anlagen				BVT 57 BVT 66 BVT 67 BVT 74
SO ₃	- Bei Verwendung von SCR	Alle Größen	Keine EN- Norm ver- fügbar	Einmal jährlich	_
Gasförmige Chloride, angegeben als HCI	 Stein- und/oder Braunkohle Brennstoffe aus produktionsrückständen aus der chemischen Industrie in Kesseln 	Alle Größen	EN 1911	Einmal vierteljähr- lich (³) (¹⁰) (¹¹)	BVT 21 BVT 57
	 Feste Biomasse und/oder Torf 	Alle Größen	EN- Fachgrund- normen	Kontinuierlich (¹²) (¹³)	BVT 25
	- Abfallmitverbrennung	Alle Größen	EN- Fachgrund- normen	Kontinuierlich (³) (¹³)	BVT 66 BVT 67

Stoff/ Parameter	Brennstoff/Prozess/Art der Feuerungsanlage	Feuerungs- wärmeleis- tung der Feue- rungsanla- ge	Norm(en)	Mindesthäufigkeit der Überwachung (²)	Überwa- chung verbun- den mit
HF	 Stein- und/oder Braunkohle Brennstoffe aus Produktionsrückständen aus der chemischen Industrie in Kesseln Feste Biomasse und/oder Torf 		Keine EN- Norm ver- fügbar Keine EN- Norm ver-	Einmal vierteljähr- lich (³) (¹0) (¹1) Einmal jährlich	BVT 21 BVT 57
	- Abfallmitverbrennung	Alle Größen	fügbar EN- Fachgrund- normen	Kontinuierlich (³) (¹³)	BVT 66 BVT 67
Staub	 Stein- und/oder Braunkohle Feste Biomasse und/oder Torf HFO- und/oder gasölbefeuerte Kessel Prozessgase aus der Eisen- und Stahlherstellung Prozessrückstände aus der chemischen Industrie in Kesseln IGCC-Anlagen HFO- und/oder gasölbetriebene Motoren Gasölbetriebene Gasturbinen 	Alle Größen	Generische EN-Normen sowie EN 13284-1 und EN 13284-2	Kontinuierlich (³)	BVT 22 BVT 26 BVT 30 BVT 35 BVT 39 BVT 51 BVT 58 BVT 75
	- Abfallmitverbrennung	Alle Größen	Generische EN-Normen und EN 13284-2	Kontinuierlich	BVT 68 BVT 69
Metalle und Metalloide	- Stein- und/oder Braunkoh- le	Alle Größen	EN 14385	Einmal jährlich (¹⁵)	BVT 22

Stoff/ Parameter	Brennstoff/Prozess/Art der Feuerungsanlage	Feuerungs- wärmeleis- tung der Feue- rungsanla- ge	Norm(en) (¹)	Mindesthäufigkeit der Überwachung (²)	Überwa- chung verbun- den mit
außer Quecksilber (As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sb,	 Feste Biomasse und/oder Torf HFO- und/oder gasölbe- feuerte Kessel und Moto- ren 				BVT 26 BVT 30
Se, TI, V, Zn)	- Abfallmitverbrennung	< 300 MW _{th} ≥ 300 MW _{th}	EN 14385 EN 14385	Einmal pro Halb- jahr (¹⁰) Einmal vierteljähr- lich (¹⁶) (¹⁰)	BVT 68 BVT 69
Hg	 IGCC-Anlagen Stein- und/oder Braunkohle einschließlich Abfallmitverbrennung 		EN 14385 EN 13211	Einmal jährlich (¹⁵) Einmal vierteljährlich (¹⁰) (¹⁷)	BVT 75 BVT 23
	J	≥ 300 MW _{th}	Generische EN-Normen und EN 14884	Kontinuierlich (¹³) (¹⁸)	
	- Feste Biomasse und/oder Torf	Alle Größen	EN 13211	Einmal jährlich (¹⁹)	BVT 27
	 Abfallmitverbrennung mit fester Biomasse und/oder Torf 	Alle Größen ≥ 100 MW _{th}	EN 13211 EN 13211	Einmal vierteljähr- lich (¹⁰)	BVT 70
TVOC	 IGCC-Anlagen HFO- und/oder gasölbetriebene Motoren Prozessbrennstoffe aus der chemischen Industrie in Kesseln 		EN 12619	Einmal jährlich (²⁰) Einmal pro Halb- jahr (¹⁰)	BVT 75 BVT 3 BVT 59
	 Abfallmitverbrennung mit Steinkohle, Braunkohle, fester Biomasse und/oder Torf 	Alle Größen	Generische EN-Normen	Kontinuierlich	BVT 71

Stoff/ Parameter	Brennstoff/Prozess/Art der Feuerungsanlage	Feuerungs- wärmeleis- tung der Feue- rungsanla- ge	Norm(en)	Mindesthäufigkeit der Überwachung (²)	Überwa- chung verbun- den mit
Formalde-	- Erdgas in fremdgezünde-	Alle Größen	Keine EN-	Einmal jährlich	BVT 45
hyd	ten Gas- und Zweikraft-		Norm ver-		
	stoff-Magermotoren		fügbar		
CH₄	- Erdgasbetriebene Motoren	Alle Größen	EN ISO	Einmal jährlich (²¹)	BVT 45
			25139		
PCDD/F	- Prozessbrennstoffe aus	Alle Größen	EN 1948-1,	Einmal pro Halb-	BVT 59
	der chemischen Industrie		EN 1948-2,	jahr (¹⁰) (²²)	BVT 71
	in Kesseln		EN 1948-3		
4.	- Abfallmitverbrennung				

- (1) Generische EN-Normen für kontinuierliche Messungen sind die EN 15267-1, EN 15267-2, EN 15267-3 und die EN 14181. EN-Normen für periodische Messungen werden in der Tabelle angegeben.
- (²) Die Überwachungshäufigkeit gilt nicht in Fällen, in denen der Anlagenbetrieb dem alleinigen Zweck der Durchführung einer Emissionsmessung dienen würde.
- (3) Bei Anlagen mit einer Feuerungswärmeleistung von <100 MW und < 1 500 Betriebsstunden pro Jahr ist eine Mindestüberwachungshäufigkeit von einmal pro Halbjahr möglich. Bei Gasturbinen erfolgt die periodische Überwachung bei >70 % Last der Feuerungsanlage. Hinsichtlich der Mitverbrennung von Abfall mit Steinkohle, Braunkohle, fester Biomasse und/oder Torf muss für die Überwachungshäufigkeit auch Teil 6 von Anhang VI der Industrieemissionenrichtlinie (IED) berücksichtigt werden.
- (4) Wird selektive katalytische Reduktion (SCR) eingesetzt, kann die Mindestüberwachungshäufigkeit mindestens einmal pro Jahr betragen, sofern die Emissionswerte nachweislich ausreichend stabil sind.
- (5) Bei erdgasbefeuertern Turbinen mit einer Feuerungswärmeleistung von <100 MW und < 1 500 Betriebsstunden jährlich oder bei bestehenden OCGT kann alternativ ein PEMS eingesetzt werden.
- (6) Alternativ kann ein PEMS eingesetzt werden.
- (⁷) Es werden zwei Messreihen durchgeführt, bei der einen wird die Anlage mit Lasten von > 70 % und bei der anderen mit Lasten von < 70 % betrieben.
- (8) Als Alternative zur kontinuierlichen Messung in Anlagen, die Öl mit einem bekannten Schwefelgehalt verbrennen und nicht über ein System zur Abgasentschwefelung verfügen, können zur Bestimmung der SO₂-Emissionen mindestens einmal vierteljährlich erfolgende periodische Messungen und/oder andere Verfahren, mit denen die Bereitstellung von Daten gleichwertiger wissenschaftlicher Qualität gewährleistet wird, eingesetzt werden.

Die rechtliche Vorsorgeuntersuchung für Unternehmen.

Nutzen Sie unsere gespeicherten Erfahrungen aus 26 Jahren Complianceberatung. Wir vermeiden die Haftung für Organisationsverschulden von Führungskräften. Sie müssen organisatorisch dafür sorgen, dass sie sich selbst und dass sich alle Mitarbeiter des Unternehmens legal verhalten. Dazu lassen sich alle Risiken und Pflichten eines Unternehmens mit unserem System ermitteln, delegieren, monatlich aktualisieren, erfüllen, kontrollieren, digital speichern und für alle jederzeit verfügbar halten. Die Verantwortlichen können digital abfragen, wer, welche Pflicht, an welchem Betriebsteil, wie zu erfüllen hat. Führungskräfte können auf einer Oberaufsichtsmaske mit einem Blick kontrollieren, ob alle Pflichten im Unternehmen erfüllt sind. Systematisch senken wir den Complianceaufwand durch Standardisierung um 60 %. Sachverhalte im Unternehmen wiederholen sich, verursachen gleiche Risiken und lösen gleiche Rechtspflichten zur Risikoabwehr aus. Rechtspflichten werden nur einmal geprüft, verlinkt, gespeichert und immer wieder mehrfach genutzt. Wir sind Rechtsanwälte mit eigenen Informatikern und bieten eine Softwarelösung mit Inhalten und präventiver Rechtsberatung aus einer Hand. Auf Anregungen aus den Unternehmen passen unsere EDV-Spezialisten die Software unseres Compliance-Management-Systems an. Der aktuelle Inhalt unserer Datenbank: 18.000 Rechtsvorschriften von EU, Bund, Ländern und Berufsgenossenschaften, 7.500 Gerichtsurteile, standardisierte Pflichtenkataloge für 45 Branchen und 57.000 vorformulierte Betriebspflichten. 44.000 Unternehmensrisiken sind mit 59.000 Rechtspflichten drei Millionen Mal verlinkt und gespeichert. Auf die Inhalte kommt es an. Je umfangreicher die Datenbank umso geringer ist das Risiko eine Unternehmenspflicht zu übersehen.

		Feuerungs-			
		wärmeleis-		Batter de est Vertical ets	Überwa-
Stoff/	Brennstoff/Prozess/Art der	tung der	Norm(en)	Mindesthäufigkeit	chung
Parameter	Feuerungsanlage	Feue-	(¹)	der Überwachung	verbun-
		rungsanla-		()	den mit
		ge			

- (9) Bei Brennstoffen aus Produktionsrückständen der chemischen Industrie kann die Überwachungshäufigkeit für Anlagen mit < 100 MW_{th} nach einer anfänglichen Charakterisierung des Brennstoffs (siehe BVT 5), die auf der Grundlage einer Beurteilung der Relevanz der Schadstofffreisetzungen (z.B. Konzentration im Brennstoff, eingesetzte Abgasbehandlung) in den Emissionen in die Luft erfolgt, angepasst werden; eine Anpassung muss auf jeden Fall stets dann erfolgen, wenn eine Veränderung der Brennstoffmerkmale Auswirkungen auf die Emissionen haben könnte.
- (10) Bei nachweislich hinreichend stabilen Emissionswerten k\u00f6nnen periodische Messungen immer dann durchgef\u00fchrt werden, wenn eine Ver\u00e4nderung bei den Merkmalen des Brennstoffs und/oder Abfalls Auswirkungen auf die Emissionen haben k\u00f6nnte; Messungen m\u00fcssen aber auf jeden Fall mindestens einmal pro Jahr stattfinden. Hinsichtlich der Mitverbrennung von Abfall mit Steinkohle, Braunkohle, fester Biomasse und/oder Torf muss f\u00fcr die \u00dcberwachungsh\u00e4ufigkeit auch Teil 6 von Anhang VI der Industrieemissionenrichtlinie (IED) ber\u00fccksichtigt werden.
- (11)Bei Brennstoffen aus Produktionsrückständen der chemischen Industrie kann die Überwachungshäufigkeit nach einer anfänglichen Charakterisierung des Brennstoffes (siehe BVT 5), die auf der Grundlage einer Beurteilung der Relevanz der Schadstofffreisetzungen (z.B. Konzentration im Brennstoff, eingesetzte Abgasbehandlung) in den Emissionen in die Luft erfolgt, angepasst werden; eine Anpassung muss auf jeden Fall stets dann erfolgen, wenn eine Veränderung der Brennstoffmerkmale Auswirkungen auf die Emissionen haben könnte.
- (12)Bei Anlagen mit einer Feuerungswärmeleistung von <100 MW, die weniger als 500 Stunden jährlich in Betrieb sind, soll die Mindestüberwachungshäufigkeit mindestens einmal pro Jahr betragen. Bei Anlagen mit einer Feuerungswärmeleistung von <100 MW, die zwischen 500 und 1 500 Stunden jährlich in Betrieb sind, soll die Mindestüberwachungshäufigkeit mindestens einmal pro Halbjahr betragen.
- (¹³)Bei nachweislich hinreichend stabilen Emissionswerten sollen periodische Messungen immer dann durchgeführt werden, wenn eine Veränderung bei den Merkmalen des Brennstoffs und/oder Abfalls Auswirkungen auf die Emissionen haben könnte; Messungen müssen aber auf jeden Fall mindestens einmal pro Halbjahr stattfinden.
- (¹⁴)Bei Anlagen, die Prozessgase aus der Eisen- und Stahlherstellung verbrennen, soll die Mindestüberwachungshäufigkeit mindestens einmal pro Halbjahr betragen, wenn die Emissionswerte nachweislich hinreichend stabil sind.
- (15)Die Liste der Schadstoffe und die Überwachungshäufigkeit können nach einer anfänglichen Charakterisierung des Brennstoffs (siehe BVT 5), die auf der Grundlage einer Beurteilung der Relevanz der Schadstofffreisetzungen (z.B. Konzentration im Brennstoff, eingesetzte Abgasbehandlung) in den Emissionen in die Luft erfolgt, angepasst werden; eine Anpassung muss auf jeden

		Feuerungs-			
		wärmeleis-			Überwa-
Stoff/	Brennstoff/Prozess/Art der	tung der	Norm(en)	Mindesthäufigkeit	chuna
Parameter	Feuerungsanlage	Feue-	(¹)	der Überwachung	verbun-
		rungsanla-		(2)	den mit
		ge			

Fall stets dann erfolgen, wenn eine Veränderung der Brennstoffmerkmale Auswirkungen auf die Emissionen haben könnte.

- (16)Bei Anlagen mit < 1 500 Betriebsstunden jährlich kann die Mindestüberwachungshäufigkeit mindestens einmal pro Halbjahr betragen.
- (17)Bei Anlagen mit < 1 500 Betriebsstunden j\u00e4hrlich kann die Mindest\u00fcberwachungsh\u00e4ufigkeit mindestens einmal pro Jahr betragen.</p>
- (¹⁸)Als Alternative zu kontinuierlichen Messungen kann eine kontinuierliche Probenentnahme mit häufigen Analysen zeitintegrierter Proben, beispielsweise eine Methode der Überwachung mittels genormter Adsorptionsfalle, eingesetzt werden.
- (¹⁹)Sind die Emissionswerte aufgrund des niedrigen Quecksilbergehalts des Brennstoffs nachweislich hinreichend stabil, können periodische Messungen auch nur dann durchführt werden, wenn eine Veränderung der Brennstoffmerkmale Auswirkungen auf die Emissionen haben könnte.
- $(^{20})$ Die Mindestüberwachungshäufigkeit gilt nicht für Anlagen mit < 1 500 Betriebsstunden pro Jahr.
- (²¹)Messungen werden durchgeführt, wenn die Anlage mit Lasten von > 70 % betrieben wird.
- (²²)Bei Brennstoffen aus Produktionsrückständen der chemischen Industrie ist eine Überwachung nur dann durchzuführen, wenn die Brennstoffe chlorierte Stoffe enthalten.

BVT 5 Die BVT besteht in der Überwachung von bei der Abgasbehandlung entstehenden Emissionen in Gewässer in der im Folgenden angegebenen Mindesthäufigkeit und unter Einhaltung maßgeblicher EN-Normen. Wenn keine EN-Normen verfügbar sind, besteht die BVT in der Anwendung von ISO-Normen und/oder von nationalen oder sonstigen internationalen Normen, die die Bereitstellung von Daten gleichwertiger wissenschaftlicher Qualität gewährleisten.

Stoff/Parameter	Norm(en)	Mindestüber- wa chungshäufig- keit	Überwachung verbunden mit
Gesamter organischer Kohlen-	EN 1484	Einmal pro Mo-	BVT 15
stoff (TOC) (1)		nat	
Chemischer Sauerstoffbedarf	Keine EN-Norm verfügbar		
(CSB) (¹)			
Gesamtmenge an Schwebstoffen	EN 872		
(TSS)			

Stoff/Parameter		Norm(en)	Mindestüber- wa chungshäufig- keit	Überwachung verbunden mit
Fluorid (F)		EN ISO 10304-1		
Sulfat (SO ₄ ²⁻)		EN ISO 10304-1		
Sulfid, leicht freisetzbar	· (S ²⁻)	Keine EN-Norm verfügbar		
Sulfit (SO ₃ ²⁻)		EN ISO 10304-3		
Metalle und Metalloide	As	Verschiedene EN-Normen verfüg-		
	Cd	bar (z.B. EN ISO 11885 oder EN		
	Cr	ISO 17294-2)		
	Cu			
	Ni			
	Pb			
	Zn			
	Hg	Verschiedene EN-Normen verfüg-		
		bar (z.B. EN ISO 12846 oder EN		
		ISO 178 52)		
Chlorid (Cl ⁻)		Verschiedene EN-Normen verfüg-		
		bar (z.B. EN ISO 10304-1 oder EN		_
		ISO 15682)		
Gesamtstickstoff		EN 12260		_

⁽¹⁾ Die Überwachung des TOC und die Überwachung des CSB sind Alternativen. Eine Überwachung des TOC ist vorzuziehen, da sie sich nicht auf die Verwendung von sehr toxischen Verbindungen stützt.

1.3. Allgemeine Umwelt- und Feuerungsleistung

BVT 6 Die BVT zur Verbesserung der allgemeinen Umweltleistung von Feuerungsanlagen und zur Reduzierung der Emissionen von CO und unverbrannten Stoffen in die Luft besteht in der Sicherstellung einer optimierten Verbrennung und der Verwendung einer geeigneten Kombination der nachfolgend angegebenen Techniken.

	Technik	Beschreibung	Anwendbarkeit
a.	Vermengen und	Sicherstellung stabiler Verbren-	Allgemein anwendbar
	Mischen von Brenn-	nungsbedingungen und/oder Redu-	
	stoffen	zierung der Emission von Schadstof-	
		fen mittels Mischen unterschiedli-	
		cher Qualitäten des gleichen Brenn-	
		stofftyps	

Technik		Beschreibung	Anwendbarkeit
b.	Wartung des Feue-	Regelmäßige, geplante Instandhal-	
	rungssystems	tung im Einklang mit den Hersteller-	
		empfehlungen	
C.	Modernes Steue-	Siehe die Beschreibung in Abschnitt	Die Anwendbarkeit auf alte Feue-
	rungssystem	8.1	rungsanlagen kann durch die Not-
			wendigkeit der Umrüstung des Feue-
			rungssystems und/oder des Steue-
			rungs- und Regelungssystems ein-
			geschränkt sein
d.	Gute Konstrukti-	Gute Konstruktionsweise des Ofens,	Allgemein anwendbar auf neue Feu-
	onsweise der Feue-	der Brennkammern, Brenner und zu-	erungsanlagen
	rungsanlage	gehörigen Vorrichtungen	
e.	Brennstoffwahl	Auswahl eines anderen Brennstoffs	Anwendbar innerhalb der Grenzen,
		oder mehrerer anderer Brennstoffe	die durch die Verfügbarkeit geeigne-
		mit einem besseren Umweltprofil	ter Brennstoffarten mit einem insge-
		(z.B. mit einem niedrigen Gehalt an	samt besseren Umweltprofil gesetzt
		Schwefel und/oder Quecksilber) aus	werden; dies kann durch die Ener-
		den verfügbaren Brennstoffen	giepolitik des jeweiligen Mitglied-
		und/oder teilweise oder vollständige	staats oder, wenn es sich um die
		Umstellung auf solche Brennstoffe,	Verbrennung von Brennstoffen aus
		u. a. beim Anfahren oder bei der	industriellen Prozessen handelt, die
		Verwendung von Reservebrennstof-	Brennstoffbilanz des jeweiligen inte-
		fen	grierten Standorts beeinflusst wer-
			den.
			Bei bestehenden Feuerungsanlagen
			können aufgrund der Konfiguration
			und Konstruktionsweise der Anlage
			Einschränkungen für die Art des
			gewählten Brennstoffs bestehen

BVT 7 Die BVT zur Reduzierung der Ammoniakemissionen in die Luft beim Einsatz von Verfahren der selektiven katalytischen Reduktion (SCR) und/oder selektiven nichtkatalytischen Reduktion (SNCR) zur Senkung der NO_X-Emissionen besteht in der Optimierung der Konzeption und/oder des Betriebs der SCR- und/oder SNCR-Verfahren (z.B. optimiertes Verhältnis zwischen Reagens und NO_X, homogene Reagensverteilung und optimale Tropfengröße des Reagens).

BVT-assoziierte Emissionswerte

Der BVT-assoziierte Emissionswert für NH₃-Emissionen in die Luft beim Einsatz von

SCR- und/oder SNCR- Verfahren beträgt < 3-10 mg/Nm³ als Jahresmittelwert oder Mittelwert über den Zeitraum der Probennahme. Das untere Ende des Wertebereichs lässt sich beim Einsatz der SCR erreichen und das obere Ende des Wertebereichs kann erreicht werden, wenn SNCR ohne nassarbeitende Abgasreinigungstechniken eingesetzt wird. Bei Anlagen, die Biomasse verbrennen und mit unterschiedlichen Lasten arbeiten, sowie bei Motoren, die HFO und/oder Gasöl verbrennen, entspricht das obere Ende der Bandbreite der BVT-assoziierten Emissionswerte 15 mg/Nm³.

BVT 8 Die BVT zur Vermeidung und Verringerung von Emissionen in die Luft bei normalen Betriebszuständen besteht darin, durch eine zweckdienliche Konstruktions- und Betriebsweise und eine entsprechende Instandhaltung sicherzustellen, dass die Emissionsminderungssysteme bei optimaler Kapazität und Verfügbarkeit genutzt werden.

BVT 9 Die BVT zur Verbesserung der allgemeinen Umweltleistung von Feuerungsanlagen und/oder Vergasungsanlagen und zur Reduzierung der Emissionen in die Luft besteht darin, für alle verwendeten Brennstoffe im Rahmen des Umweltmanagementsystems die folgenden Elemente in Qualitätssicherungs- und Qualitätskontrollprogramme aufzunehmen (siehe BVT 1):

- i) anfängliche, vollständige Charakterisierung des Brennstoffs, die mindestens die nachfolgend aufgeführten Parameter umfasst und im Einklang mit EN-Normen durchgeführt wird. ISO-Normen, nationale oder andere internationalen Normen können angewendet werden, sofern sie die Bereitstellung von Daten gleichwertiger wissenschaftlicher Qualität gewährleisten;
- ii) regelmäßige Prüfung der Brennstoffqualität zur Feststellung, ob sie der anfänglichen Charakterisierung entspricht und mit den durch die Anlagenkonstruktion gesetzten Vorgaben konform ist. Wie häufig die Prüfungen erfolgen und welche Parameter aus der nachfolgenden Tabelle ausgewählt werden, wird durch die Veränderlichkeit des Brennstoffs und eine Beurteilung der Relevanz der Schadstofffreisetzungen (z.B. Konzentration im Brennstoff, angewendete Abgasbehandlung) bestimmt;
- iii) anschließende Anpassung der Anlageneinstellungen, wenn und wann dies erforderlich und praktikabel ist (z.B. Einbindung der Brennstoffcharakterisierung und Regelung in das moderne Steuerungssystem (siehe die Beschreibung in Abschnitt 8.1)).

Die rechtliche Vorsorgeuntersuchung für Unternehmen.

Nutzen Sie unsere gespeicherten Erfahrungen aus 26 Jahren Complianceberatung. Wir vermeiden die Haftung für Organisationsverschulden von Führungskräften. Sie müssen organisatorisch dafür sorgen, dass sie sich selbst und dass sich alle Mitarbeiter des Unternehmens legal verhalten. Dazu lassen sich alle Risiken und Pflichten eines Unternehmens mit unserem System ermitteln, delegieren, monatlich aktualisieren, erfüllen, kontrollieren, digital speichern und für alle jederzeit verfügbar halten. Die Verantwortlichen können digital abfragen, wer, welche Pflicht, an welchem Betriebsteil, wie zu erfüllen hat. Führungskräfte können auf einer Oberaufsichtsmaske mit einem Blick kontrollieren, ob alle Pflichten im Unternehmen erfüllt sind. Systematisch senken wir den Complianceaufwand durch Standardisierung um 60 %. Sachverhalte im Unternehmen wiederholen sich, verursachen gleiche Risiken und lösen gleiche Rechtspflichten zur Risikoabwehr aus. Rechtspflichten werden nur einmal geprüft, verlinkt, gespeichert und immer wieder mehrfach genutzt. Wir sind Rechtsanwälte mit eigenen Informatikern und bieten eine Softwarelösung mit Inhalten und präventiver Rechtsberatung aus einer Hand. Auf Anregungen aus den Unternehmen passen unsere EDV-Spezialisten die Software unseres Compliance-Management-Systems an. Der aktuelle Inhalt unserer Datenbank: 18.000 Rechtsvorschriften von EU, Bund, Ländern und Berufsgenossenschaften, 7.500 Gerichtsurteile, standardisierte Pflichtenkataloge für 45 Branchen und 57.000 vorformulierte Betriebspflichten. 44.000 Unternehmensrisiken sind mit 59.000 Rechtspflichten drei Millionen Mal verlinkt und gespeichert. Auf die Inhalte kommt es an. Je umfangreicher die Datenbank umso geringer ist das Risiko eine Unternehmenspflicht zu übersehen.

Beschreibung

Die anfängliche Charakterisierung und die regelmäßige Prüfung des Brennstoffs können vom Anlagenbetreiber und/oder Brennstofflieferanten durchgeführt werden. Führt der Lieferant die Prüfung durch, werden dem Betreiber die vollständigen Ergebnisse in Form einer Produkt- oder Brennstoffspezifikation und/oder Garantie des Lieferanten übermittelt.

Brennstoff(e)	Stoffe/der Charakterisierung unterliegende Parameter
Biomasse/Torf	- LHV
	- Feuchtigkeit
	- Asche
	- C, Cl, F, N, S, K, Na
	- Metalle und Metalloide (As, Cd, Cr, Cu, Hg, Pb, Zn)
Stein-/Braunkohle	- LHV
	- Feuchtigkeit
	- Flüchtige Bestandteile, Asche, gebundener Kohlenstoff, C, H, N, O, S
	- Br, Cl, F
	- Metalle und Metalloide (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Sb, Tl, V, Zn)
HFO	- Asche
	- C, S, N, Ni, V
Gasöl	- Asche
	- N, C, S
Erdgas	- LHV
	- CH ₄ , C ₂ H ₆ , C ₃ , C ₄ +, CO ₂ , N ₂ , Wobbe-Index
Brennstoffe aus	- Br, C, Cl, F, H, N, O, S
produktionsrückstän-	- Metalle und Metalloide (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Sb, Tl, V, Zn)
den aus der chemi-	
schen Industrie (1)	
Prozessgase aus	- LHV, CH ₄ (für COG), C _X H _Y (für COG), CO ₂ , H ₂ , N ₂ , Gesamtschwefel, Staub,
der Eisen- und	Wobbe- Index
Stahlherstellung	
Abfall (2)	- LHV
	- Feuchtigkeit
	- Flüchtige Bestandteile, Asche, Br, C, Cl, F, H, N, O, S
	- Metalle und Metalloide (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Sb, Tl, V, Zn)
(1) Die Liete der eherr	

- (1) Die Liste der charakterisierten Stoffe/Parameter kann auf diejenigen verkürzt werden, von denen auf der Grundlage von Informationen über die Rohstoffe und den Herstellungsprozess vernünftigerweise erwartet werden kann, dass sie in dem/den Brennstoff/-en vorhanden sind.
- (2) Diese Charakterisierung wird unbeschadet der Anwendung des Vorabnahme- und Abnahmever-

fahrens, das in der BVT 60 Buchstabe a festgelegt wird und zur Charakterisierung und/oder Überprüfung anderer bzw. weiterer Stoffe/Parameter als den hier aufgeführten führen kann, durchgeführt.

BVT 10 Die BVT zur Reduzierung der Emissionen in die Luft und/oder in Gewässer während Betriebszuständen außerhalb des Normalbetriebs (OTNOC) besteht darin, im Rahmen des Umweltmanagementsystems einen Managementplan aufzustellen und umzusetzen (siehe BVT 1), der in einem angemessenen Verhältnis zur Relevanz der potenziellen Schadstofffreisetzungen steht und folgende Elemente umfasst:

- eine zweckdienliche Konstruktionsweise der Systeme, die bezüglich der Herbeiführung von Betriebszuständen außerhalb des Normalbetriebs mit möglichen Auswirkungen auf die Emissionen in die Luft, in Gewässer und/oder in den Boden als relevant betrachtet werden (z.B. Konstruktionskonzepte für Schwachlast zur Senkung der für eine stabile Erzeugung in Gasturbinen erforderlichen Mindestlasten beim An- und Abfahren);
- Aufstellung und Umsetzung eines besonderen Plans für die vorbeugende Instandhaltung dieser relevanten Systeme;
- Prüfung und Erfassung von durch Betriebszustände außerhalb des Normalbetriebs und damit verbundene Umstände verursachten Emissionen sowie gegebenenfalls Umsetzung von Korrekturmaßnahmen;
- periodische Beurteilung der Gesamtemissionen im Verlauf von Betriebszuständen außerhalb des Normalbetriebs (z.B. Häufigkeit von Ereignissen, Dauer, Quantifizierung/Schätzung der Emissionen) sowie gegebenenfalls Umsetzung von Korrekturmaßnahmen.

BVT 11 Die BVT besteht darin, während Betriebszuständen außerhalb des Normalbetriebs die Emissionen in die Luft und/oder in Gewässer ordnungsgemäß zu überwachen.

Beschreibung

Die Überwachung kann durch eine direkte Messung der Emissionen oder durch die Überwachung von Surrogatparametern erfolgen, wenn sich herausstellt, dass dies von gleicher oder besserer Qualität ist als die direkte Emissionsmessung. Emissionen während des An- und Abfahrens können auf der Grundlage einer detaillierten, mindestens einmal jährlich für ein typisches An- und Abfahrverfahren durchgeführten Messung bewertet werden. Die Ergebnisse dieser Messung werden dann zur Schät-

zung der Emissionen für jeden, im gesamten Jahr durchgeführten An- und Abfahrvorgang verwendet.

1.4. Energieeffizienz

BVT 12 Die BVT zur Erhöhung der Energieeffizienz von Feuerungs-, Vergasungsund/oder IGCC-Anlagen mit ≥ 1 500 Betriebsstunden im Jahr besteht darin, eine geeignete Kombination der im Folgenden aufgeführten Techniken zu nutzen.

	Technik	Beschreibung	Anwendbarkeit
a.	Optimierung der	Siehe die Beschreibung in Abschnitt	Allgemein anwendbar
	Verbrennung	8.2.	
		Mit der Optimierung der Verbren-	
		nung wird der Gehalt unverbrannter	
		Stoffe in den Abgasen und den fes-	
		ten Verbrennungsrückständen mi-	
		nimiert	
b.	Optimierung der	Betrieb bei höchstmöglichem Druck	
	Zustände des Ar-	und höchstmöglicher Temperatur	
	beitsmediums	des Arbeitsmediums Gas oder	
		Dampf innerhalb der Grenzen, die	
		beispielsweise durch die Notwen-	
		digkeit der Verminderung der NO _X -	
		Emissionen oder die Merkmale der	
		verlangten Energie gesetzt werden	
c.	Optimierung des	Betrieb mit geringerem Turbinenab-	
	Dampfkreislaufs	dampf mittels Nutzung der - im	
		Rahmen der Konstruktionsbedingun-	
		gen - niedrigstmöglichen Tempera-	
		tur des Kondensatorkühlwassers	
d.	Minimierung des	Minimierung des internen Energie-	
	Energieverbrauchs	verbrauchs (z.B. größere Effizienz	
		der Speisewasserpumpe)	
e.	Vorwärmen der	Wiederverwendung eines Teils der	Allgemein anwendbar innerhalb der
	Verbrennungsluft	aus dem Verbrennungsabgas zu-	Grenzen, die durch die Notwendig-
		rückgewonnenen Wärme zum Vor-	keit der Verminderung der NO _X -
		heizen der in der Verbrennung ge-	Emissionen gesetzt werden
		nutzten Luft	

Technik		Beschreibung	Anwendbarkeit
f.	Brennstoffvorhei-	Vorheizen des Brennstoffs mittels	Allgemein anwendbar innerhalb der
	zung	rückgewonnener Wärme	Grenzen, die durch die Konstrukti-
			onsweise des Kessels und die Not-
			wendigkeit der Verminderung der
			NO _x -Emissionen gesetzt werden
g.	Modernes Steue-	Siehe die Beschreibung in Abschnitt	Allgemein anwendbar auf neue Anla-
	rungssystem	8.2.	gen. Die Anwendbarkeit auf alte An-
		Die rechnergestützte Regelung der	lagen kann durch die Notwendigkeit
		Hauptverbrennungsparameter er-	der Umrüstung des Feuerungssys-
		möglicht die Verbesserung der Ver-	tems und/oder des Steuerungs- und
		brennungseffizienz	Regelungssystems eingeschränkt
			sein
h.	Speisewasservor-	Vorheizen des aus dem Dampfkon-	Nur auf Dampfkreisläufe, nicht auf
	heizung mittels	densator kommenden Wassers mit	Heißwasserkessel, anwendbar.
	rückgewonnener	rückgewonnener Wärme, bevor es	Die Anwendbarkeit auf bestehende
	Wärme	erneut im Kessel verwendet wird	Anlagen kann Einschränkungen in
			Verbindung mit der Anlagenkonfigu-
			ration und der Menge rückgewinnba-
			rer Wärme unterliegen
i.	Wärmerückgewin-	Rückgewinnung von Wärme (vor al-	Anwendbar innerhalb der Grenzen,
	nung mittels Kraft-	lem aus dem Dampfsystem) zur	die durch die örtliche Heizungs- und
	Wärme-Kopplung	Erzeugung von Warmwasser/Dampf	Stromnachfrage gesetzt werden.
	(KWK)	zur Verwendung in industriellen	Die Anwendbarkeit kann bei Gas-
		Prozess- en/Tätigkeiten oder in ei-	kompressoren mit einem nicht bere-
		nem öffentlichen Netz zur Fernwär-	chenbaren betrieblichen Wärmprofil
		meversorgung. Eine zusätzliche	eingeschränkt sein
		Wärmerückgewinnung ist möglich	
		aus:	
		- Abgas,	
		- Rostkühlung,	
		- zirkulierender Wirbelschicht	
j.	KWK-Bereitschaft	Siehe die Beschreibung in Abschnitt	Nur anwendbar auf neue Anlagen,
		8.2.	bei denen ein realistisches Potenzial
			für die künftige Nutzung von Wärme
			in der Nähe der Anlage besteht
k.	Abgaskondensator	Siehe die Beschreibung in Abschnitt	Allgemein anwendbar auf KWK-
i		8.2.	Anlagen, sofern genügend Nachfra-
			ge nach Niedertemperaturwärme

	Technik	Beschreibung	Anwendbarkeit
I.	Wärmespeicherung	Wärmespeicherung im KWK-Modus	Nur auf KWK-Anlagen anwendbar.
			Die Anwendbarkeit kann bei niedri-
			gem Wärmelastbedarf eingeschränkt
			sein
m.	Nassschornstein	Siehe die Beschreibung in Abschnitt	Allgemein anwendbar auf neue und
		8.2.	bestehende, mit Nass-REA ausge-
			stattete Anlagen
n.	Kühlturmablass	Die Freisetzung von Emissionen in	Nur anwendbar auf Anlagen, die mit
		die Luft durch einen Kühlturm und	Nass-REA ausgestattet sind, bei
		nicht einen dazu bestimmten	denen die Zwischenüberhitzung des
		Schornstein	Abgases vor der Freisetzung erfor-
			derlich ist und bei denen das Kühl-
			system aus einem Kühlturm besteht
0.	Brennstoffvortrock-	Die Verringerung des Feuchtigkeits-	Anwendbar auf die Verbrennung von
	nung	gehalts des Brennstoffs vor der Ver-	Biomasse und/oder Torf innerhalb
		brennung zum Zweck der Verbesse-	der Grenzen, die durch Selbstent-
		rung der Verbrennungsbedingungen	zündungsrisiken gesetzt werden
			(z.B. wird der Feuchtigkeitsgehalt
			von Torf in der gesamten Lieferkette
			über 40 % gehalten).
			Die Umrüstung bestehender Anlagen
			kann durch den zusätzlichen Brenn-
			wert, der durch den Trocknungsvor-
			gang gewonnen werden kann, und
			die begrenzten Umrüstungsmöglich-
			keiten, die manche Kesselkonstruk-
			tionen oder Anlagenkonfigurationen
			bieten, eingeschränkt sein
p.	Minimierung von	Minimierung von Restwärmeverlus-	Nur anwendbar auf mit Festbrenn-
	Wärmeverlusten	ten, z.B. Verlusten, die über die	stoffen befeuerte Verbrennungsein-
		Schlacke erfolgen oder die mittels	heiten sowie Vergasungs-/IGCC-
		Dämmung von Strahlungsquellen	Anlagen
		verringert werden können	

Die rechtliche Vorsorgeuntersuchung für Unternehmen.

Nutzen Sie unsere gespeicherten Erfahrungen aus 26 Jahren Complianceberatung. Wir vermeiden die Haftung für Organisationsverschulden von Führungskräften. Sie müssen organisatorisch dafür sorgen, dass sie sich selbst und dass sich alle Mitarbeiter des Unternehmens legal verhalten. Dazu lassen sich alle Risiken und Pflichten eines Unternehmens mit unserem System ermitteln, delegieren, monatlich aktualisieren, erfüllen, kontrollieren, digital speichern und für alle jederzeit verfügbar halten. Die Verantwortlichen können digital abfragen, wer, welche Pflicht, an welchem Betriebsteil, wie zu erfüllen hat. Führungskräfte können auf einer Oberaufsichtsmaske mit einem Blick kontrollieren, ob alle Pflichten im Unternehmen erfüllt sind. Systematisch senken wir den Complianceaufwand durch Standardisierung um 60 %. Sachverhalte im Unternehmen wiederholen sich, verursachen gleiche Risiken und lösen gleiche Rechtspflichten zur Risikoabwehr aus. Rechtspflichten werden nur einmal geprüft, verlinkt, gespeichert und immer wieder mehrfach genutzt. Wir sind Rechtsanwälte mit eigenen Informatikern und bieten eine Softwarelösung mit Inhalten und präventiver Rechtsberatung aus einer Hand. Auf Anregungen aus den Unternehmen passen unsere EDV-Spezialisten die Software unseres Compliance-Management-Systems an. Der aktuelle Inhalt unserer Datenbank: 18.000 Rechtsvorschriften von EU, Bund, Ländern und Berufsgenossenschaften, 7.500 Gerichtsurteile, standardisierte Pflichtenkataloge für 45 Branchen und 57.000 vorformulierte Betriebspflichten. 44.000 Unternehmensrisiken sind mit 59.000 Rechtspflichten drei Millionen Mal verlinkt und gespeichert. Auf die Inhalte kommt es an. Je umfangreicher die Datenbank umso geringer ist das Risiko eine Unternehmenspflicht zu übersehen.

	Technik	Beschreibung	Anwendbarkeit
q.	Moderne Materialien	Verwendung moderner Materialien,	Nur auf neue Anlagen anwendbar
		die nachweislich hohen Betriebs-	
		temperaturen und Drücken wider-	
		stehen können und somit in der	
		Lage sind, eine höhere Effizienz des	
		Dampferzeugungs-/ Verbrennungs-	
		prozesses zu erzielen	
r.	Aufrüstungen von	Dies schließt Techniken wie die	Die Anwendbarkeit kann durch den
	Dampfturbinen	Erhöhung von Temperatur und	Bedarf, die Dampfzustände und/oder
		Druck des Mitteldruckdampfs, Hin-	eine begrenzte Lebensdauer der
		zufügen einer Niederdruckturbine	Anlage eingeschränkt sein
		und Veränderungen der Geometrie	
		der Rotorblätter der Turbine ein	
s.	Überkritische und	Nutzung eines Dampfkreislaufs un-	Nur anwendbar auf neue Anlagen
	ultraüberkritische	ter Einschluss von Dampf-	mit ≥ 600 MW _{th} und > 4 000 Be-
	Dampfzustände	Zwischenüberhitzungssystemen, in	triebsstunden im Jahr.
		dem der Dampf bei überkritischen	Nicht anwendbar, wenn der Zweck
		Zuständen Drücke über 220,6 bar	der Anlage darin besteht, niedrige
		und Temperaturen über 374 °C und	Dampftemperaturen und/oder -
		bei ultraüberkritischen Dampfzu-	drücke im verarbeitenden Gewerbe
		ständen Drücke über 250-300 bar	zu erzeugen.
		und Temperaturen über 580-600 °C	Nicht anwendbar auf Gasturbinen
		erreichen kann	und Dampf erzeugende Motoren im
			KWK- Modus.
			Bei Biomasse verbrennenden Anla-
			gen kann die Anwendbarkeit durch
			Hochtemperaturkorrosion bei be-
			stimmten Biomassen eingeschränkt
			sein

1.5. Wasserverbrauch und Emissionen in Gewässer

BVT 13 Die BVT zur Verringerung des Wasserverbrauchs und der Menge an eingeleitetem, schadstoffbelastetem Abwasser besteht in der Anwendung einer oder beider der folgenden Techniken.

	Technik	Beschreibung	Anwendbarkeit
a.	Wasserrecycling	Restwasserströme, einschließlich	Nicht anwendbar auf Abwässer aus
		Abflusswasser der Anlage werden	Kühlsystemen, wenn Chemikalien
		für andere Zwecke wiederverwen-	zur Wasseraufbereitung und/oder
		det. Die Verwertung ist aufgrund der	Meersalze in hohen Konzentrationen
		Qualitätsanforderungen an den auf-	vorhanden sind.
		nehmenden Wasserstrom und den	
		Wasserhaushalt der Anlage be-	
		grenzt.	
b.	Trockenentaschung	Trockene, heiße Bodenasche fällt	Nur anwendbar auf Anlagen, in de-
		aus der Feuerung auf ein mechani-	nen Festbrennstoffe verfeuert wer-
		sches Förderband und wird von der	den.
		Umgebungsluft abgekühlt. Für die-	Es können technische Einschrän-
		sen Vorgang wird kein Wasser ver-	kungen bestehen, die eine Nachrüs-
		wendet.	tung bestehender Feuerungsanlagen
			verhindern.

BVT 14 Die BVT zur Vermeidung der Verunreinigung unbelasteter Abwässer und zur Reduzierung von Emissionen in Gewässer besteht darin, Abwasserströme zu trennen und abhängig vom jeweiligen Schadstoffgehalt getrennt aufzubereiten.

Beschreibung

Abwasserströme, die üblicherweise getrennt und einzeln aufbereitet werden, umfassen u. a. Oberflächenablaufwasser, Kühlwasser und Abwasser aus der Abgasbehandlung.

Anwendbarkeit

Die Anwendbarkeit kann bei bestehenden Anlagen aufgrund der Konfiguration der Entwässerungssystems beschränkt sein.

BVT 15 Die BVT zur Reduzierung von Emissionen aus der Abgasbehandlung in Gewässer besteht darin, eine geeignete Kombination der folgenden Techniken sowie Sekundärtechniken zu nutzen, die zur Vermeidung einer Verdünnung möglichst nahe an der Quelle einzusetzen sind.

	Table	Typische Schadstof-	Aalla aulasit
	Technik	fe/(vermieden/gemindert)	Anwendbarkeit
		Primärtechniken	
a.	Optimierte Verbren- nungs- (siehe BVT 6) und Abgasbe- handlungssysteme (BVT 7)	Organische Verbindungen, Ammo- niak (NH ₃)	Allgemein anwendbar
		Sekundärtechniken (¹)	
b.	Adsorption auf Aktivkohle	Organische Verbindungen, Queck- silber (Hg)	Allgemein anwendbar
C.	Aerobe biologische Behandlung	Biologisch abbaubare organische Verbindungen, Ammonium (NH ₄ +)	Allgemein anwendbar auf die Behandlung organischer Verbindungen. Eine aerobische biologische Behandlung von Ammonium (NH ₄ +) ist bei hohen Chloridkonzentrationen (d.h. etwa 10 g/l) eventuell nicht anwendbar
d.	Anoxische/anaerobe biologische Behand- lung	Quecksilber (Hg), Nitrat (NO ₃ ⁻), Nitrit (NO ₂ ⁻)	Allgemein anwendbar
e.	Gerinnung und Flo- ckung	Schwebstoffe	Allgemein anwendbar
f.	Kristallisation	Metalle und Metalloide, Sulfat (SO ₄ ²⁻), Fluorid (F)	Allgemein anwendbar
g.	Filtration (z.B. Sand- filtration, Mikrofiltra- tion, Ultrafiltration)	Schwebstoffe, Metalle	Allgemein anwendbar
h.	Flotation	Schwebstoffe, freies Öl	Allgemein anwendbar
i.	Ionenaustausch	Metalle	Allgemein anwendbar
j.	Neutralisation	Säuren, Laugen	Allgemein anwendbar
k.	Oxidation	Sulfid (S ²⁻), Sulfit (SO ₃ ²⁻)	Allgemein anwendbar
l.	Ausfällung	Metalle und Metalloide, Sulfat (SO ₄ ²⁻), Fluorid (F)	Allgemein anwendbar
m.	Sedimentation	Schwebstoffe	Allgemein anwendbar
n.	Stripping	Ammoniak (NH ₃)	Allgemein anwendbar
(¹) D	ie Techniken sind in A	bschnitt 8.6 beschrieben	

Die BVT-assoziierten Emissionswerte beziehen sich auf direkte Einleitungen in ein Aufnahmegewässer an der Stelle, an der die Emission die Anlage verlässt.

Tabelle 1 - BVT-assoziierte Emissionswerte für direkte Einleitungen von Schadstoffen aus der Abgasbehandlung in ein Aufnahmegewässer

Stoff/Param	040.0	BVT-assoziierte Emissionswerte
Ston/Farani	eter	Tagesmittelwert
Gesamter organischer Kohlenstoff	(TOC)	20-50 mg/l (i) (²) (³)
Chemischer Sauerstoffbedarf (CSB	3)	60-150 mg/l (!) (²) (³)
Gesamtmenge an Schwebstoffen (TSS)	10-30 mg/l
Fluorid (F ⁻)		10-25 mg/l (³)
Sulfat (SO ₄ ²⁻)		1,3-2,0 g/l (³) (⁴) (⁵) (⁶)
Sulfid (S ²⁻), leicht freisetzbar		0,1-0,2 mg/l (³)
Sulfit (SO ₃ ²⁻)		1-20 mg/l (³)
Stoff/Parameter		BVT-assoziierte Emissionswerte
		Tagesmittelwert
Metalle und Metalloide	As	10-50 μg/l
	Cd	2-5 μg/l
	Cr	10-50 μg/l
	Cu	10-50 μg/l
Hg Ni		0,2-3 μg/l
		10-50 μg/l
	Pb	10-20 μg/l
	Zn	50-200 μg/l

- (1) Es gilt entweder der BVT-assoziierte Emissionswert für TOC oder der BVT-assoziierte Emissionswert für CSB. Eine Überwachung des TOC ist vorzuziehen, da diese nicht von der Verwendung sehr toxischer Verbindungen abhängt.
- (2) Dieser BVT-assoziierte Emissionswert gilt nach Abzug der zugeführten Last.
- (3) Dieser BVT-assoziierte Emissionswert gilt nur für Abwässer aus der Anwendung von Nass-REA.
- (4) Dieser BVT-assoziierte Emissionswert gilt nur für Feuerungsanlagen, die bei der Abgasbehandlung Calciumverbindungen verwenden.
- (5) Das obere Ende der Bandbreite der BVT-assoziierten Emissionswerte trifft bei Wasser mit hohem Salzgehalt (z.B. Salzkonzentrationen > 5 g/l) aufgrund der erhöhten Löslichkeit von Calciumsulfat eventuell nicht zu.
- (⁶) Dieser BVT-assoziierte Emissionswert gilt nicht für Einleitungen ins Meer oder in Brackwasserkörper.

1.6. Abfallwirtschaft

BVT 16 Die BVT zur Verringerung des zu deponierenden Abfalls aus Verbrennungsund/oder Vergasungsprozessen und Abgasreinigungstechniken besteht darin, betriebliche Vorgänge so zu organisieren, dass in der folgenden Rangordnung und unter Berücksichtigung des Denkens in Lebenszyklen Folgendes maximiert wird:

- a) Abfallvermeidung, z.B. Maximierung des Anteils an in Form von Nebenprodukten entstehenden Rückständen;
- b) Vorbereitung des Abfalls auf die Wiederverwendung, z.B. nach den jeweils verlangten, spezifischen Qualitätskriterien;
- c) Abfallrecycling;
- d) sonstige Abfallverwertung (z.B. energetische Verwertung), mittels Umsetzung einer geeigneten Kombination von Techniken wie:

	Technik	Beschreibung	Anwendbarkeit
a.	Erzeugung von Gips	Qualitative Optimierung der in der	Allgemein anwendbar innerhalb der
	als Nebenprodukt	Nass-REA erzeugten Reaktions-	Grenzen, die durch die erforderliche
		rückstände auf Calciumbasis, so-	Qualität des Gipses, die mit jeder
		dass deren Verwendung als Ersatz	spezifischen Nutzung verbundenen
		für abgebauten Gips möglich ist	Anforderungen an den Gesundheits-
		(z.B. als Rohstoff in der Gipskarton-	schutz und die Marktbedingungen
		industrie). Die Qualität des in der	gesetzt werden
		Nass-REA verwendeten Kalksteins	
		beeinflusst die Reinheit des erzeug-	
		ten Gipses	
b.	Recycling oder Ver-	Recycling oder Verwertung von	Allgemein anwendbar innerhalb der
	wertung von Rück-	Rückständen (z.B. aus halbtrocke-	Grenzen, die durch die für die jeweili-
	ständen im Bausek-	nen Entschwefelungsprozessen,	gen spezifischen Nutzungen erfor-
	tor	Flugasche, Bodenasche) als Bau-	derliche Materialqualität (z.B. physi-
		material (z.B. im Straßenbau, als	kalische Eigenschaften, Schadstoff-
		Ersatz für Sand in der Betonherstel-	gehalt) sowie die Marktbedingungen
		lung oder in der Zementindustrie)	gesetzt werden
c.	Energetische Ver-	Der restliche Energiegehalt kohlen-	Allgemein anwendbar, wenn Anlagen
	wertung mittels Ein-	stoffreicher Aschen und Schlämme,	Abfall im Brennstoffmix annehmen
	satz von Abfall im	die durch die Verbrennung von	können und technisch in der Lage
	Brennstoffmix	Stein- oder Braunkohle, Schweröl,	sind, diese Brennstoffe in die Brenn-
		Torf oder Biomasse erzeugt werden,	kammer einzuspeisen
		kann beispielsweise durch Mischen	
		mit dem Brennstoff rückgewonnen	
		werden	

Die rechtliche Vorsorgeuntersuchung für Unternehmen.

Nutzen Sie unsere gespeicherten Erfahrungen aus 26 Jahren Complianceberatung. Wir vermeiden die Haftung für Organisationsverschulden von Führungskräften. Sie müssen organisatorisch dafür sorgen, dass sie sich selbst und dass sich alle Mitarbeiter des Unternehmens legal verhalten. Dazu lassen sich alle Risiken und Pflichten eines Unternehmens mit unserem System ermitteln, delegieren, monatlich aktualisieren, erfüllen, kontrollieren, digital speichern und für alle jederzeit verfügbar halten. Die Verantwortlichen können digital abfragen, wer, welche Pflicht, an welchem Betriebsteil, wie zu erfüllen hat. Führungskräfte können auf einer Oberaufsichtsmaske mit einem Blick kontrollieren, ob alle Pflichten im Unternehmen erfüllt sind. Systematisch senken wir den Complianceaufwand durch Standardisierung um 60 %. Sachverhalte im Unternehmen wiederholen sich, verursachen gleiche Risiken und lösen gleiche Rechtspflichten zur Risikoabwehr aus. Rechtspflichten werden nur einmal geprüft, verlinkt, gespeichert und immer wieder mehrfach genutzt. Wir sind Rechtsanwälte mit eigenen Informatikern und bieten eine Softwarelösung mit Inhalten und präventiver Rechtsberatung aus einer Hand. Auf Anregungen aus den Unternehmen passen unsere EDV-Spezialisten die Software unseres Compliance-Management-Systems an. Der aktuelle Inhalt unserer Datenbank: 18.000 Rechtsvorschriften von EU, Bund, Ländern und Berufsgenossenschaften, 7.500 Gerichtsurteile, standardisierte Pflichtenkataloge für 45 Branchen und 57.000 vorformulierte Betriebspflichten. 44.000 Unternehmensrisiken sind mit 59.000 Rechtspflichten drei Millionen Mal verlinkt und gespeichert. Auf die Inhalte kommt es an. Je umfangreicher die Datenbank umso geringer ist das Risiko eine Unternehmenspflicht zu übersehen.

	Technik	Beschreibung	Anwendbarkeit
d.	Vorbereitung ver-	Mit der Vorbereitung von Katalysato-	Die Anwendbarkeit kann durch den
	brauchter Katalysa-	ren für die Wiederverwendung (z.B.	mechanischen Zustand des Kataly-
	toren für die Wie-	bis zu vier Mal bei SCR-	sators und die erforderliche Leistung
	derverwendung	Katalysatoren) wird ursprüngliche	bei der Verminderung von NO _x - und
		Leistung teilweise oder vollständig	NH ₃ - Emissionen eingeschränkt sein
		wiederhergestellt und somit die	
		Standzeit des Katalysators auf meh-	
		rere Jahrzehnte ausgedehnt. Die	
		Vorbereitung verbrauchter Kataly-	
		satoren ist in einen Management-	
		plan für Katalysatoren eingebunden	

1.7. Lärmemissionen

BVT 17 Die BVT zur Verminderung von Lärmemissionen besteht in der Anwendung einer der folgenden Techniken oder einer Kombination der folgenden Techniken.

	Technik	Beschreibung	Anwendbarkeit
a.	Betriebliche Maß-	Hierzu zählen:	Allgemein anwendbar
	nahmen	- verbesserte Inspektion und In-	
		standhaltung von Geräten,	
		- nach Möglichkeit Schließen der	
		Türen und Fenster in geschlosse-	
		nen Räumen,	
		- Geräte werden von erfahrenem	
		Personal bedient,	
		- nach Möglichkeit Vermeidung ge-	
		räuschvoller Tätigkeiten in der	
		Nacht,	
		- Lärmschutzvorkehrungen bei	
		Instandhaltungsarbeiten	
b.	Geräuscharme Ge-	Hierzu zählen potenziell auch Kom-	Allgemein anwendbar, wenn die
	räte	pressoren, Pumpen und Laufräder	Geräte neu sind oder ersetzt werden
C.	Schalldämmung	Die Schallausbreitung kann durch	Allgemein anwendbar auf neue Anla-
		das Einfügen von Hindernissen zwi-	gen. Bei bestehenden Anlagen kön-
		schen der Emissionsquelle und dem	nen die Möglichkeiten für das Einfü-
		Empfänger reduziert werden. Ge-	gen von Hindernissen durch Platz-
		eignete Hindernisse sind u. a. Lärm-	mangel einschränkt sein
		schutzwände, Böschungen und Ge-	
		bäude	

	Technik	Beschreibung	Anwendbarkeit
d.	Lärmschutzvorrich-	Hierzu zählen:	Die Anwendbarkeit kann aufgrund
	tungen	- Vorkehrungen zur Lärmreduzie-	von Platzmangel eingeschränkt sein
		rung,	
		- Geräteisolierung,	
		- Einhausung lärmintensiver Gerä-	
		te,	
		- Schalldämmung von Gebäuden	
e.	Geeignete Standor-	Der Lärmpegel kann durch die Erhö-	Allgemein anwendbar auf neue Anla-
	te von Geräten und	hung des Abstandes zwischen	gen. Bei bestehenden Anlagen kön-
	Gebäuden	Emissionsquelle und Empfänger und	nen die Möglichkeiten zur Verlage-
		die Nutzung von Gebäuden als	rung von Geräten und Produktions-
		Lärmschutzwand gesenkt werden	anlagen aufgrund von Platzmangel
			oder zu hohen Kosten eingeschränkt
			sein

2. BVT-Schlussfolgerungen für die Verbrennung von Festbrennstoffen

2.1. BVT-Schlussfolgerungen für die Verbrennung von Stein- und/oder Braunkohle

Wenn nicht anders angegeben, sind die in diesem Abschnitt dargestellten BVT-Schlussfolgerungen allgemein auf die Verbrennung von Stein- und/oder Braunkohle anwendbar. Sie gelten zusätzlich zu den in Abschnitt 1 aufgeführten, allgemeinen BVT-Schlussfolgerungen.

2.1.1. Allgemeine Umweltleistung

BVT 18 Zusätzlich zu BVT 6 besteht die BVT zur Verbesserung der allgemeinen Umweltleistung der Verbrennung von Stein- und/oder Braunkohle in der Anwendung der folgenden Technik.

	Technik	Beschreibung	Anwendbarkeit
a.	Integrierter Ver-	Verbrennungsprozesse wie Staub-	Allgemein anwendbar
	brennungsprozess,	feuerung, Wirbelschichtfeuerung	
	der eine hohe Effizi-	oder Vorschubrostbefeuerung erlau-	
	enz des Kessels	ben diese Integration	
	sicherstellt und Pri-		
	märtechniken zur		
	NO _x -Reduzierung		
	(z.B. Luftstufung,		
	Brennstoffstufung,		
	NO _x -arme Brenner		
	(LNB) und/oder Ab-		
	gasrückführung)		
	einschließt		

2.1.2. Energieeffizienz

BVT 19 Die BVT zur Erhöhung der Energieeffizienz der Verbrennung von Steinund/oder Braunkohle besteht in der Anwendung einer geeigneten Kombination der in der BVT 12 und der im Folgenden aufgeführten Technik.

	Technik	Beschreibung	Anwendbarkeit	
a.	Trockenentaschung	Trockene, heiße Asche fällt aus der	Es können technische Einschrän-	
		Feuerung auf ein mechanisches	kungen bestehen, die eine Umrüs-	
		Fördersystem und wird nach der	tung bestehender Verbrennungsein-	
		Rückleitung zur Feuerung zur Nach-	heiten verhindern	
		verbrennung durch Umgebungsluft		
		abgekühlt. Nutzenergie wird sowohl		
		aus der Nachverbrennung als auch		
		aus der Abkühlung der Asche ge-		
		wonnen		

Tabelle 2 - BVT-assoziierte Energieeffizienzwerte für die Verbrennung von Stein- und/oder Braunkohle

	BVT-assoziierte Energieeffizienzwerte (1) (2)			
Art der Verbrennungsein- heit	Elektrischer Nettowirkungsgrad (in %) (³)		Gesamter Netto- brennstoff- nutzungsgrad (in %) (³) (⁴) (⁵)	
	Neue Einheit (⁶) (⁷)	Bestehende Einheit	Neue oder bestehen-	
	Nede Emmen () ()	(⁶) (⁸)	de Einheit	
Mit Steinkohle befeuert, ≥ 1	45-46	33,5-44	75-97	
000 MW _{th}				
Mit Braunkohle befeuert, ≥ 1	42-44 (⁹)	33,5-42,5	75-97	
000 MW _{th}				
Mit Steinkohle befeuert, < 1	36,5-41,5 (¹⁰)	32,5-41,5	75-97	
000 MW _{th}				
Mit Braunkohle befeuert, < 1	36,5-40 (¹¹)	31,5-39,5	75-97	
000 MW _{th}				

- (1) Diese BVT-assoziierten Energieeffizienzwerte gelten nicht bei Verbrennungseinheiten mit < 1 500 Betriebsstunden pro Jahr.
- (2) Bei KWK-Verbrennungseinheiten gilt je nach der Konstruktionsweise der KWK-Anlage (d.h. eher auf Stromerzeugung oder eher auf Wärmeerzeugung ausgerichtet) nur einer der beiden BVT-assoziierten Energieeffizienzwerte "Elektrischer Nettowirkungsgrad" oder "Gesamter Nettobrennstoffnutzungsgrad".
- (3) Das untere Ende des Wertebereichs kann Fällen entsprechen, in denen die erzielte Energieeffizienz durch die Art des eingesetzten Kühlsystems oder die geografische Lage der Anlage negativ (um bis zu vier Prozentpunkte) beeinflusst wird.
- (4) Diese Werte sind möglicherweise nicht erreichbar, wenn der potenzielle Wärmebedarf zu niedrig ist.
- (5) Diese BVT-assoziierten Energieeffizienzwerte gelten nicht für Anlagen, in denen nur Strom erzeugt wird.
- (6) Die unteren Enden der Wertebereiche für die BVT-assoziierten Energieeffizienzwerte werden bei ungünstigen klimatischen Bedingungen, mit minderwertiger Braunkohle befeuerten Verbrennungseinheiten und/oder alten Verbrennungseinheiten (erste Inbetriebnahme vor 1985) erreicht.
- (7) Das obere Ende des Wertebereichs für die BVT-assoziierten Energieeffizienzwerte ist mit hohen Dampfparametern (Druck, Temperatur) erreichbar.
- (8) Die erreichbare Verbesserung des elektrischen Wirkungsgrades hängt von der jeweiligen Verbrennungseinheit ab, wobei eine Erhöhung um mehr als drei Prozentpunkte als Beleg für die Anwendung der BVT für bestehende Verbrennungseinheiten betrachtet wird. Dies hängt jedoch von der ursprünglichen Konstruktionsweise der Verbrennungseinheit und den bereits durchgeführten Umrüstungen ab.

	BVT-assoziierte Energieeffizienzwerte (¹) (²)			
Art der Verbrennungsein- heit	Elektrischer Nettowirkungsgrad (in %) (³)		Gesamter Netto- brennstoff- nutzungsgrad (in %) (³) (⁴) (⁵)	
	Neue Einheit (⁶) (⁷)	Bestehende Einheit (6) (8)	Neue oder bestehen- de Einheit	

- (9) Bei Verbrennungseinheiten, die Braunkohle mit einem niedrigeren Heizwert von weniger als 6 MJ/kg verbrennen, entspricht das untere Ende des Wertebereichs für den BVT-assoziierten Energieeffizienzwert 41,5 %.
- (¹⁰)Das obere Ende des Wertebereichs für die BVT-assoziierten Energieeffizienzwerte kann bei Verbrennungseinheiten mit ≥ 600 MW_{th}, die mit überkritischen und ultraüberkritischen Dampfzuständen arbeiten, bis zu 46 % betragen.
- (11)Das obere Ende des Wertebereichs für die BVT-assoziierten Energieeffizienzwerte kann bei Verbrennungseinheiten mit ≥ 600 MW_{th}, die mit überkritischen und ultraüberkritischen Dampfzuständen arbeiten, bis zu 44 % betragen.

2.1.3. NO_X-, N₂O- und CO-Emissionen in die Luft

BVT 20 Die BVT zur Vermeidung oder Verringerung von NO_X-Emissionen in die Luft bei gleichzeitiger Begrenzung der CO-und N₂O-Emissionen in die Luft, die bei der Verbrennung von Stein- und/oder Braunkohle entstehen, besteht in der Anwendung einer der folgenden Techniken oder einer Kombination der folgenden Techniken.

	Technik	Beschreibung	Anwendbarkeit
a.	Optimierung der	Siehe die Beschreibung in Abschnitt	Allgemein anwendbar
	Verbrennung	8.3.	
		Allgemein in Kombination mit ande-	
		ren Techniken angewendet	
b.	Kombination ande-	Die Beschreibung jeder einzelnen	
	rer Primärtechniken	Technik ist Abschnitt 8.3 zu entneh-	
	zur NO _X -	men.	
	Reduzierung (z.B.	Wahl und Leistung einer geeigneten	
	Luftstufung, Brenn-	Primärtechnik (oder Kombination	
	stoffstufung, Abgas-	von Primärtechniken) können durch	
	rückführung, NO _X -	die Konstruktionsweise des Kessels	
	arme Brenner	beeinflusst werden	
	(LNB))		

Die rechtliche Vorsorgeuntersuchung für Unternehmen.

Nutzen Sie unsere gespeicherten Erfahrungen aus 26 Jahren Complianceberatung. Wir vermeiden die Haftung für Organisationsverschulden von Führungskräften. Sie müssen organisatorisch dafür sorgen, dass sie sich selbst und dass sich alle Mitarbeiter des Unternehmens legal verhalten. Dazu lassen sich alle Risiken und Pflichten eines Unternehmens mit unserem System ermitteln, delegieren, monatlich aktualisieren, erfüllen, kontrollieren, digital speichern und für alle jederzeit verfügbar halten. Die Verantwortlichen können digital abfragen, wer, welche Pflicht, an welchem Betriebsteil, wie zu erfüllen hat. Führungskräfte können auf einer Oberaufsichtsmaske mit einem Blick kontrollieren, ob alle Pflichten im Unternehmen erfüllt sind. Systematisch senken wir den Complianceaufwand durch Standardisierung um 60 %. Sachverhalte im Unternehmen wiederholen sich, verursachen gleiche Risiken und lösen gleiche Rechtspflichten zur Risikoabwehr aus. Rechtspflichten werden nur einmal geprüft, verlinkt, gespeichert und immer wieder mehrfach genutzt. Wir sind Rechtsanwälte mit eigenen Informatikern und bieten eine Softwarelösung mit Inhalten und präventiver Rechtsberatung aus einer Hand. Auf Anregungen aus den Unternehmen passen unsere EDV-Spezialisten die Software unseres Compliance-Management-Systems an. Der aktuelle Inhalt unserer Datenbank: 18.000 Rechtsvorschriften von EU, Bund, Ländern und Berufsgenossenschaften, 7.500 Gerichtsurteile, standardisierte Pflichtenkataloge für 45 Branchen und 57.000 vorformulierte Betriebspflichten. 44.000 Unternehmensrisiken sind mit 59.000 Rechtspflichten drei Millionen Mal verlinkt und gespeichert. Auf die Inhalte kommt es an. Je umfangreicher die Datenbank umso geringer ist das Risiko eine Unternehmenspflicht zu übersehen.

	Technik	Beschreibung	Anwendbarkeit
C.	Selektive nichtkata-	Siehe die Beschreibung in Abschnitt	Die Anwendbarkeit kann bei Kesseln
	lytische Reduktion	8.3.	mit großer Querschnittsfläche, die
	(SNCR)	Kann mit "Schlupf"-SCR angewen-	eine homogene Mischung von NH ₃
		det werden	und NO _X . verhindert, eingeschränkt
			sein.
			Die Anwendbarkeit kann bei Feue-
			rungsanlagen mit < 1 500 Betriebs-
			stunden jährlich und stark schwan-
			kenden Kessellasten eingeschränkt
			sein
d.	Selektive katalyti-	Siehe die Beschreibung in Abschnitt	Trifft nicht auf Feuerungsanlagen mit
	sche Reduktion	8.3	< 300 MW _{th} und weniger als 500 Be-
	(SCR)		triebsstunden pro Jahr zu.
			lst auf Feuerungsanlagen mit <
			100 MW _{th} . nicht allgemein anwend-
			bar.
			Für die Umrüstung bestehender
			Feuerungsanlagen mit 500 bis 1 500
			Betriebsstunden pro Jahr und für
			bestehende Feuerungsanlagen mit ≥
			300 MW _{th} und weniger als 500 Be-
			triebsstunden pro Jahr können tech-
			nische und wirtschaftliche Ein-
			schränkungen bestehen
e.	Kombinierte Techni-	Siehe die Beschreibung in Abschnitt	Von Fall zu Fall, abhängig von den
	ken für die Reduzie-	8.3	Brennstoffmerkmalen und dem Ver-
	rung von NO _X und		brennungsprozess, anwendbar
	SO _X		

Tabelle 3 - BVT-assoziierte Emissionswerte für NO_X-Emissionen in die Luft, die bei der Verbrennung von Stein- und/oder Braunkohle entstehen

	BVT-assoziierte Emissionswerte (mg/Nm³)			
Feuerungswärmeleistung der Feuerungsanlage (MW _{th})	Jahresmittelwert		Tagesmittelwert oder Mittel- wert über den Zeitraum der Probennahme	
r odorangodinago (mivim)	Neue Anlage	Bestehende Anlage (¹)	Neue Anlage	Bestehende Anlage (²) (³)
< 100	100-150	100-270	155-200	165-330
100-300	50-100	100-180	80-130	155-210

	BVT-assoziierte Emissionswerte (mg/Nm³)			
Feuerungswärmeleistung der Feuerungsanlage (MW _{th})	Jahresm	ittelwert	Tagesmittelwert oder Mittel- wert über den Zeitraum der Probennahme	
r cucrungsamage (mvv _{th})	Neue Anlage	Bestehende Anlage (¹)	Neue Anlage	Bestehende Anlage (²) (³)
≥ 300, WSF-Kessel, der mit	50-85	< 85-150 (⁴) (⁵)	80-125	140-165 (⁶)
Stein- und/oder Braunkohle be-				
feuert wird und braunkohlebe-				
feuerte Staubfeuerung				
≥ 300, steinkohlebefeuerte	65-85	65-150	80-125	< 85-165 (⁷)
Staubfeuerung				

- (1) Diese BVT-assoziierten Emissionswerte gelten nicht für Anlagen mit < 1 500 Betriebsstunden pro Jahr.
- (²) Bei steinkohlebetriebenen Staubfeuerungen, die vor dem 1. Juli 1987 in Betrieb genommen wurden, die < 1 500 Betriebsstunden pro Jahr haben und für die keine SCR oder SNCR angewendet werden kann, beträgt das obere Ende des Wertebereichs 340 mg/Nm³.
- (3) Bei Anlagen mit < 500 Betriebsstunden pro Jahr sind diese Werte indikativ.
- (4) Das untere Ende des Wertebereichs gilt als erreichbar, wenn SCR eingesetzt wird.
- (5) Das obere Ende des Wertebereichs beträgt bei vor dem 7. Januar 2014 in Betrieb genommenen WSF-Kesseln sowie bei braunkohlenbetriebenen Staubfeuerungen 175 mg/Nm³.
- (6) Das obere Ende des Wertebereichs beträgt bei vor dem 7. Januar 2014 in Betrieb genommenen WSF-Kesseln sowie bei braunkohlenbetriebenen Staubfeuerungen 220 mg/Nm³.
- (⁷) Bei vor dem 7. Januar 2014 in Betrieb genommenen Anlagen beträgt das obere Ende des Wertebereichs bei Anlagen mit ≥ 1 500 Betriebsstunden pro Jahr 200 mg/Nm³ und bei Anlagen mit < 1 500 Betriebsstunden pro Jahr 220 mg/Nm³.</p>

Die indikativen Jahresmittelwerte der CO-Emissionen liegen für bestehende Feuerungsanlagen mit > 1 500 Betriebsstunden pro Jahr oder für neue Feuerungsanlagen im Allgemeinen bei:

Feuerungswärmeleistung (MW _{th}) der Feuerungsanlage	Indikativer CO-Emissionswert (mg/Nm³)
< 300	< 30-140
≥ 300, WSF-Kessel, der mit Stein- und/oder Braunkohle befeuert	< 30-100 (¹)
wird, und BKS-befeuerter Kessel	
≥ 300, SKS-befeuerter Kessel	< 5-100 (¹)

(1) Liegen Einschränkungen aufgrund der Konstruktionsweise des Kessels vor und/oder handelt es sich um Kessel mit Wirbelschichtfeuerung, die nicht mit sekundärer Abgasreinigungstechnik zur Verringerung der NO_X-Emissionen ausgestattet sind, kann das obere Ende des Wertebereichs bis

zu 140 mg/Nm³ betragen.

2.1.4. SO_X-, HCI- und HF-Emissionen in die Luft

BVT 21 Die BVT zur Vermeidung oder Verringerung von SO_{X^-} , HCI- und HF-Emissionen in die Luft, die bei der Verbrennung von Stein- und/oder Braunkohle entstehen, besteht in der Anwendung einer der folgenden Techniken oder einer Kombination der folgenden Techniken.

	Technik	Beschreibung	Anwendbarkeit
a.	Eindüsung von Sorptionsmittel in den Kessel (inner- halb der Feuerung oder des Wirbel-	Siehe die Beschreibung in Abschnitt 8.4	Allgemein anwendbar
	schichtbetts)		
b.	Kanaleindüsung des Sorptionsmittels (DSI)	Siehe die Beschreibung in Abschnitt 8.4. Die Technik kann zur HCI/HF- Abscheidung eingesetzt werden, wenn keine spezifische, nachge- schaltete REA-Technik vorliegt	
C.	Sprühabsorber im Trockenverfahren (SDA)	Siehe die Beschreibung in Abschnitt 8.4	
d.	Trockenabscheider mit zirkulierender Wirbelschicht (ZWS)		
e.	Nasswäsche	Siehe die Beschreibung in Abschnitt 8.4. Die Techniken können zur HCl/HF- Abscheidung eingesetzt werden, wenn keine spezifische, nachge- schaltete REA-Technik vorliegt	

	Technik	Beschreibung	Anwendbarkeit
f.	Nassabgasent-	Siehe die Beschreibung in Abschnitt	Nicht anwendbar auf Feuerungsan-
	schwefelung (Nass-	8.4	lagen mit < 500 Betriebsstunden pro
	REA)		Jahr.
g.	Meerwasser-REA		Für die Anwendung der Technik auf
			Feuerungsanlagen mit < 300 MW _{th} ,
			und auf die Nachrüstung bestehen-
			der Feuerungsanlagen mit 500 bis 1
			500 Betriebsstunden pro Jahr kön-
			nen technische und wirtschaftliche
			Einschränkungen bestehen
h.	Kombinierte Techni-		Von Fall zu Fall, abhängig von den
	ken für die Reduzie-		Brennstoffmerkmalen und dem Ver-
	rung von NO _X und		brennungsprozess, anwendbar
	SO _X		
i.	Ersatz oder Entfer-	Ersatz des der Nass-REA nachgela-	Nur anwendbar, wenn in Feuerungs-
	nung des der Nass-	gerten Gas-Gas-Wärmetauschers	anlagen, die mit Nass-REA und ei-
	REA nachgelager-	durch eine Mehrrohr-	nem nachgelagerten Gas-Gas-
	ten Gas-Gas-	Wärmeabzugsanlage oder Absau-	Wärmetauscher ausgestattet sind,
	Wärmetauschers	gen und Ablassen des Abgases	die Wärmetauscher geändert oder
		über einen Kühlturm oder Nass-	ersetzt werden müssen
		schornstein	
j.	Brennstoffwahl	Siehe die Beschreibung in Abschnitt	Anwendbar innerhalb der Grenzen,
		8.4.	die durch die Verfügbarkeit ver-
		Verwendung von Brennstoff mit	schiedener Brennstoffarten gesetzt
		niedrigem Gehalt an Schwefel (z.B.	werden; diese kann durch die Ener-
		unter 0,1 Gew%, auf trockener	giepolitik des jeweiligen Mitglied-
		Basis), Chlor oder Fluor	staats beeinflusst werden. Die An-
			wendbarkeit kann bei Feue-
			rungsanlagen, in denen besonders
			hochspezifische einheimische
			Brennstoffe verbrannt werden, durch
			konstruktionsbedingte Zwänge ein-
			geschränkt sein

Tabelle 4 - BVT-assoziierte Emissionswerte für SO₂-Emissionen in die Luft, die bei der Verbrennung von Stein- und/oder Braunkohle entstehen

	BVT-assoziierte Emissionswerte (mg/Nm³)				
Feuerungswärmeleistung der Feuerungsanlage (MW _{th})	Jahresmittelwert		Tagesmittel- wert	Tagesmittelwert oder Mittelwert über den Zeitraum der Proben- nahme	
	Neue Anlage Bestehende Anlage (1)		Neue Anlage	Bestehende Anlage (²)	
< 100	150-200	150-360	170-220	170-400	
100-300	80-150	95-200	135-200	135-220 (³)	
≥ 300, Staubfeuerung	10-75	10-130 (⁴)	25-110	25-165 (⁵)	
≥ 300, Kessel mit Wirbel- schichtfeuerung (⁶)	20-75	20-180	25-110	50-220	

- (1) Diese BVT-assoziierten Emissionswerte gelten nicht für Anlagen mit < 1 500 Betriebsstunden pro Jahr.
- (2) Bei Anlagen mit < 500 Betriebsstunden pro Jahr sind diese Werte indikativ.
- (3) Bei Anlagen, die vor dem 7. Januar 2014 in Betrieb genommen wurden, beträgt das obere Ende des Wertebereichs der BVT-assoziierten Emissionswerte 250 mg/Nm³.
- (4) Das untere Ende des Wertebereichs ist bei Verwendung von schwefelarmen Brennstoffen in Verbindung mit einer hochmodernen Konstruktionsweise des Nass-Abgasreinigungssystems erreichbar.
- (5) Bei Anlagen, die vor dem 7. Januar 2014 in Betrieb genommen wurden und < 1 500 Stunden pro Jahr betrieben werden, entspricht das obere Ende des Wertebereichs der BVT-assoziierten Emissionswerte 220 mg/Nm³. Bei anderen bestehenden Anlagen, die vor dem 7. Januar 2014 in Betrieb genommen wurden, entspricht das obere Ende des Wertebereichs der BVT-assoziierten Emissionswerte 205 mg/Nm³.
- (6) Bei Kesseln mit zirkulierender Wirbelschichtfeuerung kann das untere Ende des Wertebereichs durch den Einsatz einer hoch effizienten Nass-REA erreicht werden. Das obere Ende des Wertebereichs lässt sich durch die Eindüsung des Sorptionsmittels in das Wirbelschichtbett des Kessels erreichen.

Der in Tabelle 4 aufgeführte Tagesmittelwert der BVT-assoziierten Emissionswerte gilt nicht für Feuerungsanlagen mit einer Feuerungswärmeleistung von mehr als 300 MW, die speziell auf die Verfeuerung einheimischer Braunkohlebrennstoffe ausgelegt sind und aus technisch-wirtschaftlichen Gründen nachweislich die in Tabelle 4 genannten Tagesmittelwerte der BVT-assoziierten Emissionswerte nicht erreichen können. In dieses Fällen entspricht das obere Ende des Wertebereichs der Jahresmittelwerte der BVT-assoziierten Emissionswerte:

Die rechtliche Vorsorgeuntersuchung für Unternehmen.

Nutzen Sie unsere gespeicherten Erfahrungen aus 26 Jahren Complianceberatung. Wir vermeiden die Haftung für Organisationsverschulden von Führungskräften. Sie müssen organisatorisch dafür sorgen, dass sie sich selbst und dass sich alle Mitarbeiter des Unternehmens legal verhalten. Dazu lassen sich alle Risiken und Pflichten eines Unternehmens mit unserem System ermitteln, delegieren, monatlich aktualisieren, erfüllen, kontrollieren, digital speichern und für alle jederzeit verfügbar halten. Die Verantwortlichen können digital abfragen, wer, welche Pflicht, an welchem Betriebsteil, wie zu erfüllen hat. Führungskräfte können auf einer Oberaufsichtsmaske mit einem Blick kontrollieren, ob alle Pflichten im Unternehmen erfüllt sind. Systematisch senken wir den Complianceaufwand durch Standardisierung um 60 %. Sachverhalte im Unternehmen wiederholen sich, verursachen gleiche Risiken und lösen gleiche Rechtspflichten zur Risikoabwehr aus. Rechtspflichten werden nur einmal geprüft, verlinkt, gespeichert und immer wieder mehrfach genutzt. Wir sind Rechtsanwälte mit eigenen Informatikern und bieten eine Softwarelösung mit Inhalten und präventiver Rechtsberatung aus einer Hand. Auf Anregungen aus den Unternehmen passen unsere EDV-Spezialisten die Software unseres Compliance-Management-Systems an. Der aktuelle Inhalt unserer Datenbank: 18.000 Rechtsvorschriften von EU, Bund, Ländern und Berufsgenossenschaften, 7.500 Gerichtsurteile, standardisierte Pflichtenkataloge für 45 Branchen und 57.000 vorformulierte Betriebspflichten. 44.000 Unternehmensrisiken sind mit 59.000 Rechtspflichten drei Millionen Mal verlinkt und gespeichert. Auf die Inhalte kommt es an. Je umfangreicher die Datenbank umso geringer ist das Risiko eine Unternehmenspflicht zu übersehen.

- i) bei einem neuen REA-System: RCG × 0,01, bei einem Maximum von 200 mg/Nm³;
- ii) bei einem bestehenden REA-System: RCG × 0,03, bei einem Maximum von 320 mg/Nm³; wobei RCG der SO₂-Konzentration im Rohabgas als jährlicher Mittelwert (unter den in den allgemeinen Erwägungen beschriebenen Standardbedingungen) am Eingang des Systems zur Senkung der SO_X-Emissionen, bezogen auf einen Bezugssauerstoffgehalt von 6 Vol.- % O₂, entspricht;
- iii) wird als Teil des REA-Systems eine Eindüsung von Sorptionsmittel in den Kessel vorgenommen, kann die Konzentration im Rohabgas (RCG) mittels Berücksichtigung der Effizienz dieser Technik bei der SO_2 -Reduzierung (ηB_{SI}) wie folgt angepasst werden: RCG (angepasst) = RCG (gemessen)/($1-\eta B_{SI}$).

Tabelle 5 - BVT-assoziierte Emissionswerte für HCI- und HF-Emissionen in die Luft, die bei der Verbrennung von Stein- und/oder Braunkohle entstehen

Schadstoff	Feuerungswärmeleistung der Feuerungsanlage (MW _{th})	Jahresmittelwert oder Mitt	ssionswerte (mg/Nm³) elwert der im Verlauf eines nenen Proben
	(Wiveth)	Neue Anlage	Bestehende Anlage (1)
HCI	< 100	1-6	2-10 (²)
	≥ 100	1-3	1-5 (²) (³)
HF	< 100	< 1-3	< 1-6 (⁴)
	≥ 100	< 1-2	< 1-3 (⁴)

- (1) Das untere Ende dieser Wertebereichs BVT-assoziierter Emissionswerte kann bei Anlagen, die mit Nass-REA und einem nachgelagerten Gas-Gas-Wärmetauscher ausgestattet sind, möglicherweise schwierig zu erreichen sein.
- (²) Das obere Ende des Wertebereiche BVT-assoziierter Emissionswerte entspricht in folgenden Fällen 20 mg/Nm³: Anlagen, in denen Brennstoffe mit einem mittleren Chlorgehalt von 1 000 mg/kg (trocken) oder höher verbrannt werden; Anlagen mit < 1 500 Betriebsstunden pro Jahr; WSF-Kessel. Bei Anlagen mit < 500 Betriebsstunden pro Jahr sind diese Werte indikativ.</p>
- (3) Bei Anlagen, die mit Nass-REA und einem nachgelagerten Gas-Gas-Wärmetauscher ausgestattet sind, entspricht das obere Ende des Wertebereichs BVT-assoziierter Emissionswerte 7 mg/Nm³.
- (4) Das obere Ende des Wertebereichs BVT-assoziierter Emissionswerte entspricht in folgenden Fällen 7 mg/Nm³: mit Nass- REA und einem nachgelagerten Gas-Gas-Wärmetauscher ausgestattete Anlagen; Anlagen mit < 1 500 Betriebsstunden pro Jahr; WSF-Kessel. Bei Anlagen mit < 500 Betriebsstunden pro Jahr sind diese Werte indikativ.

2.1.5. Staub- und partikelgebundene Metallemissionen in die Luft

BVT 22 Die BVT zur Verringerung der bei der Verbrennung von Stein- und/oder Braunkohle entstehenden Staub- und partikelgebundenen Metallemissionen in die Luft besteht in der Anwendung einer der folgenden Techniken oder einer Kombination der folgenden Techniken.

	Technik	Beschreibung	Anwendbarkeit
a.	Elektrostatischer	Siehe die Beschreibung in Abschnitt	Allgemein anwendbar
	Abscheider (ESP)	8.5	
b.	Gewebefilter		
c.	Eindüsung von	Siehe die Beschreibungen in Ab-	
	Sorptionsmittel in	schnitt 8.5.	
	den Kessel	Diese Techniken werden hauptsäch-	
	(innerhalb der Feue-	lich für die Verminderung von SO_X ,	
	rung oder des Wir-	HCI und/oder HF eingesetzt	
	belschichtbetts)		
d.	Trockenes oder		
	halbtrockenes REA-		
	System		
e.	Nass-		Angaben zur Anwendbarkeit: siehe
	Rauchgasentschwe-		BVT 21
	felung (Nass-REA)		

Tabelle 6 - BVT-assoziierte Emissionswerte für Staubemissionen in die Luft, die bei der Verbrennung von Stein- und/oder Braunkohle entstehen

	BVT-	assoziierte Emis	ssionswerte (mg/Nm³)		
Feuerungswärmeleistung der Feuerungsanlage (MW _{th})	Jahresm	nittelwert	wert über der	ert oder Mittel- n Zeitraum der nnahme	
	Neue Anlage	Bestehende Anlage (¹)	Neue Anlage	Bestehende Anlage (²)	
< 100	2-5	2-18	4-16	4-22 (³)	
100-300	2-5	2-14	3-15	4-22 (⁴)	
300-1 000	2-5	2-10 (⁵)	3-10	3-11 (⁶)	
≥ 1 000	2-5	2-8	3-10	3-11 (⁷)	

⁽¹⁾ Diese BVT-assoziierten Emissionswerte gelten nicht für Anlagen mit < 1 500 Betriebsstunden pro Jahr.

⁽²⁾ Bei Anlagen mit < 500 Betriebsstunden pro Jahr sind diese Werte indikativ.

⁽³⁾ Bei Anlagen, die vor dem 7. Januar 2014 in Betrieb genommen wurden, beträgt das obere Ende des Wertebereichs der BVT-assoziierten Emissionswerte 28 mg/Nm³.

	BVT-assoziierte Emissionswerte (mg/Nm³)			
Feuerungswärmeleistung der Feuerungsanlage (MW _{th})	Jahresm	ittelwert	wert über der	ert oder Mittel- n Zeitraum der nnahme
	Neue Anlage	Bestehende Anlage (¹)	Neue Anlage	Bestehende Anlage (²)

- (4) Bei Anlagen, die vor dem 7. Januar 2014 in Betrieb genommen wurden, beträgt das obere Ende des Wertebereichs der BVT-assoziierten Emissionswerte 25 mg/Nm³.
- (5) Bei Anlagen, die vor dem 7. Januar 2014 in Betrieb genommen wurden, beträgt das obere Ende des Wertebereichs der BVT-assoziierten Emissionswerte 12 mg/Nm³.
- (6) Bei Anlagen, die vor dem 7. Januar 2014 in Betrieb genommen wurden, beträgt das obere Ende des Wertebereichs der BVT-assoziierten Emissionswerte 20 mg/Nm³.
- (⁷) Bei Anlagen, die vor dem 7. Januar 2014 in Betrieb genommen wurden, beträgt das obere Ende des Wertebereichs der BVT-assoziierten Emissionswerte 14 mg/Nm³.

2.1.6. Quecksilberemissionen in die Luft

BVT 23 Die BVT zur Vermeidung oder Verringerung von Quecksilberemissionen in die Luft, die bei der Verbrennung von Stein- und/oder Braunkohle entstehen, besteht in der Anwendung einer der folgenden Techniken oder einer Kombination der folgenden Techniken.

	Technik	Beschreibung	Anwendbarkeit			
Indir	ndirekter Nutzen aus Techniken, die in erster Linie zur Verringerung der Emissionen anderer					
Scha	dstoffe angewendet	werden				
a.	Elektrostatischer	Siehe die Beschreibung in Abschnitt	Allgemein anwendbar			
	Abscheider (ESP)	8.5.				
		Eine höhere Effizienz der Quecksil-				
		ber- abscheidung wird bei Abgas-				
		temperaturen unter 130 °C erreicht.				
		Die Technik wird vorwiegend zur				
		Staubminderung eingesetzt				
b.	Gewebefilter	Siehe die Beschreibung in Abschnitt				
		8.5.				
		Die Technik wird vorwiegend zur				
		Staubminderung eingesetzt				
c.	Trockenes oder	Siehe die Beschreibungen in Ab-				
	halbtrockenes REA-	schnitt 8.5.				
	System					

	Technik	Beschreibung	Anwendbarkeit
d.	Nass-	Diese Techniken werden hauptsäch-	Angaben zur Anwendbarkeit: siehe
	Rauchgasentschwe-	lich für die Verminderung von SO_X ,	BVT 21
	felung (Nass-REA)	HCI und/oder HF eingesetzt	
e.	Selektive katalyti-	Siehe die Beschreibung in Abschnitt	Angaben zur Anwendbarkeit: siehe
	sche Reduktion	8.3.	BVT 20
	(SCR)	Wird nur in Kombination mit anderen	
		Techniken zur Verbesserung oder	
		Verringerung der Quecksilberoxida-	
		tion vor dem Abscheiden des	
		Quecksilbers in einem anschließen-	
		den REA- oder Entstaubungssystem	
		genutzt.	
		Die Technik wird vorwiegend für die	
		Senkung von NO _x eingesetzt	
Spez	ifische Techniken zu	ur Senkung der Quecksilberemission	pnen
f.	Eindüsung eines	Siehe die Beschreibung in Abschnitt	Allgemein anwendbar
	Kohlenstoff-	8.5.	
	Sorptionsmittel (z.B.	Wird allgemein in Kombination mit	
	Aktivkohle oder ha-	einem ESP/Gewebefilter eingesetzt.	
	logenierte Aktivkoh-	Die Anwendung dieser Technik kann	
	le) in das Abgas	zusätzliche Behandlungsschritte zur	
		weiteren Trennung der quecksilber-	
		haltigen Kohlenstofffraktion vor der	
		weiteren Wiederverwendung der	
		Flugasche erforderlich machen	
g.	Verwendung halo-	Siehe die Beschreibung in Abschnitt	Allgemein anwendbar bei einem
	genierter Additive,	8.5	niedrigen Halogengehalt im Brenn-
	die dem Brennstoff		stoff
	hinzugefügt oder in		
	die Feuerung einge-		
	düst werden		
h.	Brennstoffvorbehan	Waschen, Vermengen oder Mischen	Für die Anwendbarkeit gilt die Vo-
	dlung	von Brennstoffen zur Begren-	raussetzung, dass zuvor eine Erhe-
		zung/Verringerung des Quecksilber-	bung zur Charakterisierung des
		gehalts oder zur Verbesserung der	Brennstoffs und Schätzung der po-
		Quecksilberabscheidung durch die	tenziellen Wirksamkeit der Technik
		Abgasreinigungseinrichtungen	durchgeführt wird

	Technik	Beschreibung	Anwendbarkeit
i.	Brennstoffwahl	Siehe die Beschreibung in Abschnitt	Anwendbar innerhalb der Grenzen,
		8.5	die durch die Verfügbarkeit verschie-
			dener Brennstoffarten gesetzt wer-
			den; diese kann durch die Energie-
			politik des jeweiligen Mitgliedstaats
			beeinflusst werden

Tabelle 7 - BVT-assoziierte Emissionswerte für Quecksilberemissionen in die Luft, die bei der Verbrennung von Stein- und/oder Braunkohle entstehen

Feuerungswärmeleistung (MW _{th}) der Feuerungsanlage	BVT-assoziierte Emissionswerte (µg/Nm³) Jahresmittelwert oder Mittelwert der im Verlauf eines Jahres gewonnenen Proben			
(mrtm) doi i odorumgodinago	Neue /	Anlage	Bestehend	e Anlage (¹)
	Steinkohle	Braunkohle	Steinkohle	Braunkohle
< 300	< 1-3	< 1-5	< 1-9	< 1-10
≥ 300	< 1-2	< 1-4	< 1-4	< 1-7

⁽¹⁾ Das untere Ende dieses Wertebereichs BVT-assoziierter Emissionswerte kann mit spezifischen Techniken zur Quecksilberminderung erreicht werden.

2.2. BVT-Schlussfolgerungen für die Verbrennung von fester Biomasse und/oder Torf

Wenn nicht anders angegeben, sind die in diesem Abschnitt dargestellten BVT-Schlussfolgerungen allgemein auf die Verbrennung von fester Biomasse und/oder Torf anwendbar. Sie gelten zusätzlich zu den in Abschnitt 1 aufgeführten, allgemeinen BVT-Schlussfolgerungen.

2.2.1. Energieeffizienz

Tabelle 8 - BVT-assoziierte Energieeffizienzwerte für die Verbrennung von fester Biomasse und/oder Torf

	BVT-assoziierte Energieeffizienzwerte (1) (2)				
And the West amount of the Mark	Elektrischer Nettowirkungs- grad (in %) (³)		Gesamter Nettobrennstoffnut- zungsgrad (in %) (4) (5)		
Art der Verbrennungseinheit	Neue Verbren- nungseinheit (⁶)	Bestehende Feue- rungseinheit	Neue Feue- rungseinheit	Bestehende Feue- rungseinheit	
Kessel für feste Biomasse und/oder Torf	33,5 bis > 38	28-38	73-99	73-99	

⁽¹) Diese BVT-assoziierten Energieeffizienzwerte gelten nicht für Verbrennungseinheiten mit < 1 500

Die rechtliche Vorsorgeuntersuchung für Unternehmen.

Nutzen Sie unsere gespeicherten Erfahrungen aus 26 Jahren Complianceberatung. Wir vermeiden die Haftung für Organisationsverschulden von Führungskräften. Sie müssen organisatorisch dafür sorgen, dass sie sich selbst und dass sich alle Mitarbeiter des Unternehmens legal verhalten. Dazu lassen sich alle Risiken und Pflichten eines Unternehmens mit unserem System ermitteln, delegieren, monatlich aktualisieren, erfüllen, kontrollieren, digital speichern und für alle jederzeit verfügbar halten. Die Verantwortlichen können digital abfragen, wer, welche Pflicht, an welchem Betriebsteil, wie zu erfüllen hat. Führungskräfte können auf einer Oberaufsichtsmaske mit einem Blick kontrollieren, ob alle Pflichten im Unternehmen erfüllt sind. Systematisch senken wir den Complianceaufwand durch Standardisierung um 60 %. Sachverhalte im Unternehmen wiederholen sich, verursachen gleiche Risiken und lösen gleiche Rechtspflichten zur Risikoabwehr aus. Rechtspflichten werden nur einmal geprüft, verlinkt, gespeichert und immer wieder mehrfach genutzt. Wir sind Rechtsanwälte mit eigenen Informatikern und bieten eine Softwarelösung mit Inhalten und präventiver Rechtsberatung aus einer Hand. Auf Anregungen aus den Unternehmen passen unsere EDV-Spezialisten die Software unseres Compliance-Management-Systems an. Der aktuelle Inhalt unserer Datenbank: 18.000 Rechtsvorschriften von EU, Bund, Ländern und Berufsgenossenschaften, 7.500 Gerichtsurteile, standardisierte Pflichtenkataloge für 45 Branchen und 57.000 vorformulierte Betriebspflichten. 44.000 Unternehmensrisiken sind mit 59.000 Rechtspflichten drei Millionen Mal verlinkt und gespeichert. Auf die Inhalte kommt es an. Je umfangreicher die Datenbank umso geringer ist das Risiko eine Unternehmenspflicht zu übersehen.

	BVT-assoziierte Energieeffizienzwerte (1) (2)				
Art der Verbrennungseinheit	Elektrischer Nettowirkungs- grad (in %) (³)		Gesamter Nettobrennstoffnut- zungsgrad (in %) (⁴) (⁵)		
Art der Verbreimungseimer	Neue Verbren- nungseinheit (⁶)	Bestehende Feue- rungseinheit	Neue Feue- rungseinheit	Bestehende Feue- rungseinheit	

Betriebsstunden pro Jahr.

- (²) Bei KWK-Verbrennungseinheiten gilt je nach der Konstruktionsweise der KWK-Verbrennungseinheit (d.h. eher auf Stromerzeugung oder eher auf Wärmeerzeugung ausgerichtet) nur einer der beiden BVT-assoziierten Energieeffizienzwerte "Elektrischer Nettowirkungsgrad" oder "Gesamter Nettobrennstoffnutzungsgrad".
- (3) Das untere Ende des Wertebereichs kann Fällen entsprechen, in denen die erzielte Energieeffizienz durch die Art des eingesetzten Kühlsystems oder die geografische Lage der Verbrennungseinheit negativ (um bis zu vier Prozentpunkte) beeinflusst wird.
- (4) Diese Werte sind möglicherweise nicht erreichbar, wenn der potenzielle Wärmebedarf zu niedrig ist.
- (5) Diese BVT-assoziierten Energieeffizienzwerte gelten nicht für Anlagen, in denen nur Strom erzeugt wird.
- (⁶) Das untere Ende des Wertebereichs kann in Verbrennungseinheiten mit <150 MW_{th}, in denen Biomassebrennstoffe mit hohem Feuchtigkeitsgehalt verbrannt werden, bis auf 32 % absinken.

2.2.2. NO_X-, N₂O- und CO-Emissionen in die Luft

BVT 24 Die BVT zur Vermeidung oder Verringerung von NO_X-Emissionen in die Luft bei gleichzeitiger Begrenzung der CO- und N₂O-Emissionen in die Luft, die bei der Verbrennung von fester Biomasse und/oder Torf entstehen, besteht in der Anwendung einer der folgenden Techniken oder einer Kombination der folgenden Techniken.

	Technik	Beschreibung	Anwendbarkeit
a.	Optimierung der Verbrennung	Siehe die Beschreibungen in Abschnitt 8.3	Allgemein anwendbar
b.	NO _x -arme Brenner (LNB)		
C.	Luftstufung		
d.	Brennstoffstufung		
e.	Abgasrückführung		

	Technik	Beschreibung	Anwendbarkeit
f.	Selektive nichtkata-	Siehe die Beschreibung in Abschnitt	Nicht anwendbar auf Feuerungsan-
	lytische Reduktion	8.3.	lagen mit < 500 Betriebsstunden pro
	(SNCR)	Kann mit "Schlupf"-SCR angewen-	Jahr und stark schwankenden Kes-
		det werden	sellasten.
			Die Anwendbarkeit kann bei Feue-
			rungsanlagen mit 500 bis 1 500 Be-
			triebsstunden pro Jahr und stark
			schwankenden Kessellasten einge-
			schränkt sein.
			Bei bestehenden Feuerungsanlagen
			innerhalb der Grenzen anwendbar,
			die durch das erforderliche Tempera-
			turfenster und die Verweildauer der
			eingespritzten Reaktionspartner ge-
			setzt werden
g.	Selektive katalyti-	Siehe die Beschreibung in Abschnitt	Nicht anwendbar auf Feuerungsan-
	sche Reduktion	8.3.	lagen mit < 500 Betriebsstunden pro
	(SCR)		Jahr.
		Bei der Verwendung von Brennstof-	Hinsichtlich der Umrüstung beste-
		fen mit hohem Alkaligehalt (z.B.	hender Anlagen mit < 300 MW _{th} .
		Stroh) kann es erforderlich sein,	können wirtschaftliche Einschrän-
		dass die SCR hinter der Entstau-	kungen bestehen.
		bungseinrichtung installiert wird	Auf bestehende Feuerungsanlagen
			mit <100 MW _{th} nicht allgemein an-
			wendbar

Tabelle 9 - BVT-assoziierte Emissionswerte für NO_X -Emissionen in die Luft, die bei der Verbrennung von fester Biomasse und/oder Torf entstehen

	BVT-assoziierte Emissionswerte (mg/Nm³)			
Feuerungswärmeleistung der Feuerungsanlage (MW _{th})	Jahresmittelwert		Tagesmittelwert oder Mittel- wert über den Zeitraum der Probennahme	
	Neue Anlage	Bestehende Anlage (1)	Neue Anlage	Bestehende Anlage (²)
50-100	70-150 (³)	70-225 (⁴)	120-200 (⁵)	120-275 (⁶)
100-300	50-140	50-180	100-200	100-220
≥ 300	40-140	40-150 (⁷)	65-150	95-165 (⁸)

⁽¹) Diese BVT-assoziierten Emissionswerte gelten nicht für Anlagen mit < 1 500 Betriebsstunden pro Jahr.

	BVT-assoziierte Emissionswerte (mg/Nm³)			
	Jahresmittelwert		Tagesmittelwert oder Mittel-	
Feuerungswärmeleistung der			wert über den Zeitraum der	
Feuerungsanlage (MW _{th})			Probennahme	
	Neue Anlage	Bestehende	Neue Anlage	Bestehende
	Neac Amage	Anlage (¹)	Neue Amage	Anlage (²)

- (2) Bei Feuerungsanlagen mit < 500 Betriebsstunden pro Jahr sind diese Werte indikativ.
- (3) Bei Anlagen, in denen Brennstoffe mit einem mittleren Kaliumgehalt von 2 000 mg/kg (trocken) oder höher und/oder mit einem mittleren Natriumgehalt von 300 mg/kg oder höher verbrannt werden, entspricht das obere Ende des Wertebereichs BVT-assoziierter Emissionswerte 200 mg/Nm³.
- (4) Bei Anlagen, in denen Brennstoffe mit einem mittleren Kaliumgehalt von 2 000 mg/kg (trocken) oder höher und/oder mit einem mittleren Natriumgehalt von 300 mg/kg oder höher verbrannt werden, entspricht das obere Ende des Wertebereichs BVT-assoziierter Emissionswerte 250 mg/Nm³.
- (5) Bei Anlagen, in denen Brennstoffe mit einem mittleren Kaliumgehalt von 2 000 mg/kg (trocken) oder höher und/oder mit einem mittleren Natriumgehalt von 300 mg/kg oder höher verbrannt werden, entspricht das obere Ende des Wertebereichs BVT-assoziierter Emissionswerte 260 mg/Nm³.
- (6) Bei vor dem 7. Januar 2014 in Betrieb genommenen Anlagen, in denen Brennstoffe mit einem mittleren Kaliumgehalt von 2 000 mg/kg (trocken) oder höher und/oder mit einem mittleren Natriumgehalt von 300 mg/kg oder höher verbrannt werden, entspricht das obere Ende des Wertebereichs BVT-assoziierter Emissionswerte 310 mg/Nm³.
- (⁷) Bei Anlagen, die vor dem 7. Januar 2014 in Betrieb genommen wurden, entspricht das obere Ende des Wertebereichs der BVT-assoziierten Emissionswerte 160 mg/Nm³.
- (8) Bei Anlagen, die vor dem 7. Januar 2014 in Betrieb genommen wurden, entspricht das obere Ende des Wertebereichs der BVT-assoziierten Emissionswerte 200 mg/Nm³.

Die indikativen Jahresmittelwerte der CO-Emissionen sind wie folgt:

- < 30-250 mg/Nm³ bei bestehenden Feuerungsanlagen mit 50-100 MW_{th} und
 ≥ 1 500 Betriebsstunden pro Jahr oder bei neuen Feuerungsanlagen mit 50-100 MW_{th};
- < 30-160 mg/Nm³ bei bestehenden Feuerungsanlagen mit 100-300 MW_{th} und
 ≥ 1 500 Betriebsstunden pro Jahr oder bei neuen Feuerungsanlagen mit 100-300 MW_{th};
- < 30-80 mg/Nm³ bei bestehenden Feuerungsanlagen mit ≥ 300 MW_{th} und ≥
 1 500 Betriebsstunden pro Jahr oder bei neuen Feuerungsanlagen mit ≥
 300 MW_{th}.

2.2.3. SO_X-, HCl- und HF-Emissionen in die Luft

BVT 25 Die BVT zur Vermeidung oder Verringerung von SO_X-, HCl- und HF-

Emissionen in die Luft, die bei der Verbrennung von fester Biomasse und/oder Torf entstehen, besteht in der Anwendung einer der folgenden Techniken oder einer Kombination der folgenden Techniken.

	Technik	Beschreibung	Anwendbarkeit
a.	Einspritzung von Sorpti-	Siehe die Beschreibungen in	Allgemein anwendbar
	onsmittel in den Kessel	Abschnitt 8.4	
	(innerhalb des Ofens oder		
	Wirbelschichtbetts)		
b.	Kanaleinspritzung des		
	Sorptionsmittels (DSI)		
c.	Sprühabsorber im Tro-		
	ckenverfahren (SDA)		
d.	Trockenabscheider mit		
	zirkulierender Wirbel-		
	schicht (ZWS)		
e.	Nasswäsche		
f.	Abgaskondensator		
g.	Nassrauchgasentschwefe-		Nicht anwendbar auf Feuerungsanla-
	lung (Nass-REA)		gen mit < 500 Betriebsstunden pro
			Jahr.
			Hinsichtlich der Umrüstung beste-
			hender Feuerungsanlagen mit 500 bis
			1 500 Betriebsstunden pro Jahr kön-
			nen technische und wirtschaftliche
			Einschränkungen bestehen
h.	Brennstoffwahl		Anwendbar innerhalb der Grenzen,
			die durch die Verfügbarkeit verschie-
			dener Brennstoffarten gesetzt wer-
			den; diese kann durch die Energiepo-
			litik des jeweiligen Mitgliedstaats be-
			einflusst werden

Tabelle 10 - BVT-assoziierte Emissionswerte für SO₂-Emissionen in die Luft, die bei der Verbrennung von fester Biomasse und/oder Torf entstehen

	BVT-assoziierte Emissionswerte für SO ₂ (mg/Nm³)			
Feuerungswärmeleistung der Feuerungsanlage (MW _{th})	Jahresmittelwert		Tagesmittelwert oder Mittel- wert über den Zeitraum der Probennahme	
	Neue Anlage	Bestehende Anlage (1)	Neue Anlage	Bestehende Anlage (²)
< 100	15-70	15-100	30-175	30-215
100-300	< 10-50	< 10-70 (³)	< 20-85	< 20-175 (⁴)
≥ 300	< 10-35	< 10-50 (³)	< 20-70	< 20-85 (⁵)

⁽¹⁾ Diese BVT-assoziierten Emissionswerte gelten nicht für Anlagen mit < 1 500 Betriebsstunden pro Jahr.

- (2) Bei Anlagen mit < 500 Betriebsstunden pro Jahr sind diese Werte als indikativ zu verstehen.
- (3) Bei bestehenden Anlagen, in denen Brennstoffe mit einem mittleren Schwefelgehalt von 0,1 Gew.-%, (trocken) oder h\u00f6her verbrannt werden, entspricht das obere Ende des Wertebereichs der BVT-assoziierten Emissionswerte 100 mg/Nm3.
- (4) Bei bestehenden Anlagen, in denen Brennstoffe mit einem mittleren Schwefelgehalt von 0,1 Gew.-%, (trocken) oder höher verbrannt werden, entspricht das obere Ende des Wertebereichs der BVT-assoziierten Emissionswerte 215 mg/Nm³.
- (5) Bei bestehenden Anlagen, in denen Brennstoffe mit einem mittleren Schwefelgehalt von 0,1 Gew.-%, (trocken) oder höher verbrannt werden, entspricht das obere Ende des Wertebereichs der BVT-assoziierten Emissionswerte 165 mg/Nm³ bzw. 215 mg/Nm³, sofern die betreffenden Anlagen vor dem 7. Januar 2014 in Betrieb genommen wurden und/oder sofern dort in WSF-Kesseln Torf verbrannt wird.

Die rechtliche Vorsorgeuntersuchung für Unternehmen.

Nutzen Sie unsere gespeicherten Erfahrungen aus 26 Jahren Complianceberatung. Wir vermeiden die Haftung für Organisationsverschulden von Führungskräften. Sie müssen organisatorisch dafür sorgen, dass sie sich selbst und dass sich alle Mitarbeiter des Unternehmens legal verhalten. Dazu lassen sich alle Risiken und Pflichten eines Unternehmens mit unserem System ermitteln, delegieren, monatlich aktualisieren, erfüllen, kontrollieren, digital speichern und für alle jederzeit verfügbar halten. Die Verantwortlichen können digital abfragen, wer, welche Pflicht, an welchem Betriebsteil, wie zu erfüllen hat. Führungskräfte können auf einer Oberaufsichtsmaske mit einem Blick kontrollieren, ob alle Pflichten im Unternehmen erfüllt sind. Systematisch senken wir den Complianceaufwand durch Standardisierung um 60 %. Sachverhalte im Unternehmen wiederholen sich, verursachen gleiche Risiken und lösen gleiche Rechtspflichten zur Risikoabwehr aus. Rechtspflichten werden nur einmal geprüft, verlinkt, gespeichert und immer wieder mehrfach genutzt. Wir sind Rechtsanwälte mit eigenen Informatikern und bieten eine Softwarelösung mit Inhalten und präventiver Rechtsberatung aus einer Hand. Auf Anregungen aus den Unternehmen passen unsere EDV-Spezialisten die Software unseres Compliance-Management-Systems an. Der aktuelle Inhalt unserer Datenbank: 18.000 Rechtsvorschriften von EU, Bund, Ländern und Berufsgenossenschaften, 7.500 Gerichtsurteile, standardisierte Pflichtenkataloge für 45 Branchen und 57.000 vorformulierte Betriebspflichten. 44.000 Unternehmensrisiken sind mit 59.000 Rechtspflichten drei Millionen Mal verlinkt und gespeichert. Auf die Inhalte kommt es an. Je umfangreicher die Datenbank umso geringer ist das Risiko eine Unternehmenspflicht zu übersehen.

Tabelle 11 - BVT-assoziierte Emissionswerte für HCl- und HF-Emissionen in die Luft, die bei der Verbrennung von fester Biomasse und/oder Torfentstehen

	BVT-as		issionswerte für HCI n³) (¹) (²)		BVT-assoziierte Emissi- onswerte für HF (mg/Nm³)	
Feuerungswärme- leistung (MW _{th}) der Feuerungsanlage	Mittelwert	elwert oder der im Ver- Jahres ge- n Proben	Mittelwert Zeitraum d	elwert oder t über den der Proben- nme		ber den Zeit- robenahme
	Neue Anla- ge	Bestehen- de Anlage (³) (⁴)	Neue Anla- ge	Bestehen- de Anlage (⁵)	Neue Anla- ge	Bestehende Anlage (⁵)
< 100	1-7	1-15	1-12	1-35	< 1	< 1,5
100-300	1-5	1-9	1-12	1-12	< 1	< 1
≥ 300	1-5	1-5	1-12	1-12	< 1	< 1

- (¹) Bei Anlagen, in denen Brennstoffe mit einem mittleren Chlorgehalt von ≥ 0,1 Gew.-% (trocken) verbrannt werden oder bei bestehenden Anlagen, in denen Biomasse zusammen mit schwefelreichem Brennstoff (z.B. Torf) verbrannt oder in denen Additive zur Alkali-Chlor-Umwandlung (z.B. elementarer Schwefel) verwendet werden, entspricht das obere Ende des Wertebereichs BVT-assoziierter Emissionswerte für das Jahresmittel neuer Anlagen 15 mg/Nm³ und das obere Ende des Wertebereichs BVT-assoziierter Emissionswerte für das Jahresmittel bestehender Anlagen beträgt 25 mg/Nm³. Der Wertebereich BVT-assoziierter Emissionswerte für Tagesmittel findet auf diese Anlagen keine Anwendung.
- (2) Der Wertebereich BVT-assoziierter Emissionswerte für das Tagesmittel findet auf Anlagen mit < 1 500 Betriebsstunden pro Jahr keine Anwendung. Das obere Ende des Wertebereichs BVT-assoziierter Emissionswerte für das Jahresmittel neuer Anlagen mit < 1 500 Betriebsstunden pro Jahr entspricht 15 mg/Nm³.
- (3) Diese BVT-assoziierten Emissionswerte gelten nicht für Anlagen mit < 1 500 Betriebsstunden pro Jahr.
- (4) Das untere Ende dieser Wertebereichs BVT-assoziierter Emissionswerte kann bei Anlagen, die mit Nass-REA und einem nachgelagerten Gas-Gas-Wärmetauscher ausgestattet sind, möglicherweise schwierig zu erreichen sein.
- (5) Bei Anlagen mit < 500 Betriebsstunden pro Jahr sind diese Werte als indikativ zu verstehen.

2.2.4. Staub- und partikelgebundene Metallemissionen in die Luft

BVT 26 Die BVT zur Verringerung bei der Verbrennung von fester Biomasse und/oder Torf entstehender Staub- und partikelgebundener Metallemissionen in die Luft besteht in der Anwendung einer der folgenden Techniken oder einer Kombination der folgenden Techniken.

	Technik	Beschreibung	Anwendbarkeit
a.	Elektrostatischer	Siehe die Beschreibung in Abschnitt	Allgemein anwendbar
	Abscheider (ESP)	8.5	
b.	Gewebefilter		
c.	Trockenes oder	Siehe die Beschreibungen in Ab-	
	halbtrockenes REA-	schnitt 8.5	
	System	Diese Techniken werden hauptsäch-	
d.	Nass-	lich für die Verminderung von SO _x ,	Angaben zur Anwendbarkeit: siehe
	Rauchgasentschwe-	HCI und/oder HF eingesetzt	BVT 25
	felung (Nass-REA)		
e.	Brennstoffwahl	Siehe die Beschreibung in Abschnitt	Anwendbar innerhalb der Grenzen,
		8.5	die durch die Verfügbarkeit verschie-
			dener Brennstoffarten gesetzt wer-
			den; diese kann durch die Energie-
			politik des jeweiligen Mitgliedstaats
			beeinflusst werden

Tabelle 12 - BVT-assoziierte Emissionswerte für Staubemissionen in die Luft, die bei der Verbrennung von fester Biomasse und/oder Torf entstehen

	BVT-assoziierte Emissionswerte für Staub (mg/Nm³)			
Feuerungswärmeleistung der Feuerungsanlage (MW _{th})	Jahresmittelwert		wert über der	ert oder Mittel- n Zeitraum der nnahme
	Neue Anlage	Bestehende Anlage (¹)	Neue Anlage	Bestehende Anlage (²)
< 100	2-5	2-15	2-10	2-22
100-300	2-5	2-12	2-10	2-18
≥ 300	2-5	2-10	2-10	2-16

⁽¹⁾ Diese BVT-assoziierten Emissionswerte gelten nicht für Anlagen mit < 1 500 Betriebsstunden pro Jahr.

2.2.5. Quecksilberemissionen in die Luft

BVT 27 Die BVT zur Vermeidung oder Verringerung von Quecksilberemissionen in die Luft, die bei der Verbrennung von fester Biomasse und/oder Torf entstehen, besteht in der Anwendung einer der folgenden Techniken oder einer Kombination der folgenden Techniken.

⁽²⁾ Bei Anlagen mit < 500 Betriebsstunden pro Jahr sind diese Werte als indikativ zu verstehen.

Besondere Techniken zur Senkung der Quecksilberemissionen a. Einspritzung eines Kohlenstoff-Sorptionsmittel (z.B. Aktivkohle oder halogenierte Aktivkohle oder halogenierte Aktivkohle) in das Abgas b. Verwendung halogenierte Additive, die dem Brennstoff hinzugefügt oder in den Ofen eingespritzt werden c. Brennstoffwahl d. Brennstoffwahl Indirekter Nutzen aus Techniken, die in erster Linie zur Verringerung der Emissionen ar Schadstoffe angewendet werden d. Elektrostatischer Abscheider (ESP) e. Gewebefilter Die Techniken werden vorwiegend zur Staubbekämpfung eingesetzt	
Kohlenstoff- Sorptionsmittel (z.B. Aktivkohle oder halogenierte Aktivkohle) in das Abgas b. Verwendung halogenierter Additive, die dem Brennstoff hinzugefügt oder in den Ofen eingespritzt werden c. Brennstoffwahl Anwendbar innerhalb der Gredie durch die Verfügbarkeit vir dener Brennstoffarten gesetz den; diese kann durch die Enpolitik des jeweiligen Mitglied beeinflusst werden Indirekter Nutzen aus Techniken, die in erster Linie zur Verringerung der Emissionen ar Schadstoffe angewendet werden d. Elektrostatischer Abscheider (ESP) e. Gewebefilter Biehe Beschreibungen in Abschnitt Allgemein anwendbar	
Sorptionsmittel (z.B. Aktivkohle oder halogenierte Aktivkohle) in das Abgas b. Verwendung halogenierter Additive, die dem Brennstoff hinzugefügt oder in den Ofen eingespritzt werden c. Brennstoffwahl Anwendbar innerhalb der Gredie durch die Verfügbarkeit von dener Brennstoffarten gesetz den; diese kann durch die Enpolitik des jeweiligen Mitglied beeinflusst werden Indirekter Nutzen aus Techniken, die in erster Linie zur Verringerung der Emissionen aus Schadstoffe angewendet werden d. Elektrostatischer Abscheider (ESP) e. Gewebefilter Die Techniken werden vorwiegend	
Aktivkohle oder halogenierte Aktivkohle) in das Abgas b. Verwendung halogenierter Additive, die dem Brennstoff hinzugefügt oder in den Ofen eingespritzt werden c. Brennstoffwahl Anwendbar innerhalb der Gredie durch die Verfügbarkeit von dener Brennstoffarten gesetz den; diese kann durch die Enpolitik des jeweiligen Mitglied beeinflusst werden Indirekter Nutzen aus Techniken, die in erster Linie zur Verringerung der Emissionen ar Schadstoffe angewendet werden d. Elektrostatischer Abscheider (ESP) 8.5. Gewebefülter Die Techniken werden vorwiegend	
logenierte Aktivkoh- le) in das Abgas b. Verwendung halo- genierter Additive, die dem Brennstoff hinzugefügt oder in den Ofen einge- spritzt werden c. Brennstoffwahl Anwendbar innerhalb der Gre die durch die Verfügbarkeit ver dener Brennstoffarten gesetz den; diese kann durch die En politik des jeweiligen Mitglied beeinflusst werden d. Elektrostatischer Abscheider (ESP) e. Gewebefilter Ballgemein anwendbar bei ein niedrigen Halogengehalt im E stoff Anwendbar innerhalb der Gre die durch die Verfügbarkeit ver dener Brennstoffarten gesetz den; diese kann durch die En politik des jeweiligen Mitglied beeinflusst werden Allgemein anwendbar Allgemein anwendbar Allgemein anwendbar	
b. Verwendung halogenierter Additive, die dem Brennstoff hinzugefügt oder in den Ofen eingespritzt werden c. Brennstoffwahl Anwendbar innerhalb der Gredie durch die Verfügbarkeit von dener Brennstoffarten gesetzten; diese kann durch die Enpolitik des jeweiligen Mitglied beeinflusst werden Indirekter Nutzen aus Techniken, die in erster Linie zur Verringerung der Emissionen ar Schadstoffe angewendet werden d. Elektrostatischer Abscheider (ESP) e. Gewebefilter Die Techniken werden vorwiegend	
b. Verwendung halogenierter Additive, die dem Brennstoff hinzugefügt oder in den Ofen eingespritzt werden c. Brennstoffwahl Indirekter Nutzen aus Techniken, die in erster Linie zur Verringerung der Emissionen ar Schadstoffe angewendet werden d. Elektrostatischer Abscheider (ESP) e. Gewebefilter Allgemein anwendbar bei ein niedrigen Halogengehalt im Estoff Anwendbar innerhalb der Gredie durch die Verfügbarkeit von dener Brennstoffarten gesetzte den; diese kann durch die Enpolitik des jeweiligen Mitglied beeinflusst werden Allgemein anwendbar ein niedrigen Halogengehalt im Estoff stoff Anwendbar innerhalb der Gredie durch die Verfügbarkeit von dener Brennstoffarten gesetzte den; diese kann durch die Enpolitik des jeweiligen Mitglied beeinflusst werden Allgemein anwendbar den Halogengehalt im Estoff die durch die Verfügbarkeit von dener Brennstoffarten gesetzte den; diese kann durch die Enpolitik des jeweiligen Mitglied beeinflusst werden Allgemein anwendbar die in Anwendbar in Anwendbar in Allgemein anwendbar anwendbar anwendbar in Abscheider (ESP) Biehe Beschreibungen in Abschnitt Allgemein anwendbar anwendbar in Abscheider (ESP) Biehe Beschreibungen in Abschnitt Allgemein anwendbar a	
genierter Additive, die dem Brennstoff hinzugefügt oder in den Ofen einge- spritzt werden C. Brennstoffwahl Anwendbar innerhalb der Gre die durch die Verfügbarkeit von dener Brennstoffarten gesetz den; diese kann durch die En politik des jeweiligen Mitglied beeinflusst werden Indirekter Nutzen aus Techniken, die in erster Linie zur Verringerung der Emissionen ar Schadstoffe angewendet werden d. Elektrostatischer Abscheider (ESP) 8.5. e. Gewebefilter Die Techniken werden vorwiegend	
die dem Brennstoff hinzugefügt oder in den Ofen einge- spritzt werden C. Brennstoffwahl Anwendbar innerhalb der Gre die durch die Verfügbarkeit v dener Brennstoffarten gesetz den; diese kann durch die En politik des jeweiligen Mitglied beeinflusst werden Indirekter Nutzen aus Techniken, die in erster Linie zur Verringerung der Emissionen ar Schadstoffe angewendet werden d. Elektrostatischer Abscheider (ESP) 8.5. Die Techniken werden vorwiegend	m
hinzugefügt oder in den Ofen eingespritzt werden c. Brennstoffwahl Anwendbar innerhalb der Gredie durch die Verfügbarkeit wordener Brennstoffarten gesetzt den; diese kann durch die Enpolitik des jeweiligen Mitglied beeinflusst werden Indirekter Nutzen aus Techniken, die in erster Linie zur Verringerung der Emissionen ar Schadstoffe angewendet werden d. Elektrostatischer Abscheider (ESP) e. Gewebefilter Die Techniken werden vorwiegend	renn-
den Ofen einge- spritzt werden c. Brennstoffwahl Anwendbar innerhalb der Gre die durch die Verfügbarkeit von dener Brennstoffarten gesetz den; diese kann durch die En politik des jeweiligen Mitglied beeinflusst werden Indirekter Nutzen aus Techniken, die in erster Linie zur Verringerung der Emissionen ar Schadstoffe angewendet werden d. Elektrostatischer Abscheider (ESP) 8.5. e. Gewebefilter Die Techniken werden vorwiegend	
spritzt werden c. Brennstoffwahl Anwendbar innerhalb der Gredie durch die Verfügbarkeit von dener Brennstoffarten gesetzt den; diese kann durch die En politik des jeweiligen Mitglied beeinflusst werden Indirekter Nutzen aus Techniken, die in erster Linie zur Verringerung der Emissionen ar Schadstoffe angewendet werden d. Elektrostatischer Abscheider (ESP) e. Gewebefilter Siehe Beschreibungen in Abschnitt Allgemein anwendbar 8.5. Die Techniken werden vorwiegend	
c. Brennstoffwahl Anwendbar innerhalb der Gredie durch die Verfügbarkeit von dener Brennstoffarten gesetzt den; diese kann durch die Enpolitik des jeweiligen Mitglied beeinflusst werden Indirekter Nutzen aus Techniken, die in erster Linie zur Verringerung der Emissionen ar Schadstoffe angewendet werden d. Elektrostatischer Siehe Beschreibungen in Abschnitt Abscheider (ESP) e. Gewebefilter Die Techniken werden vorwiegend	
die durch die Verfügbarkeit von dener Brennstoffarten gesetzt den; diese kann durch die En politik des jeweiligen Mitglied beeinflusst werden Indirekter Nutzen aus Techniken, die in erster Linie zur Verringerung der Emissionen ar Schadstoffe angewendet werden d. Elektrostatischer Abscheider (ESP) 8.5. e. Gewebefilter Die Techniken werden vorwiegend	
dener Brennstoffarten gesetz den; diese kann durch die En politik des jeweiligen Mitglied beeinflusst werden Indirekter Nutzen aus Techniken, die in erster Linie zur Verringerung der Emissionen ar Schadstoffe angewendet werden d. Elektrostatischer Siehe Beschreibungen in Abschnitt Allgemein anwendbar Abscheider (ESP) 8.5. e. Gewebefilter Die Techniken werden vorwiegend	nzen,
den; diese kann durch die En politik des jeweiligen Mitglied beeinflusst werden Indirekter Nutzen aus Techniken, die in erster Linie zur Verringerung der Emissionen ar Schadstoffe angewendet werden d. Elektrostatischer Siehe Beschreibungen in Abschnitt Allgemein anwendbar Abscheider (ESP) 8.5. e. Gewebefilter Die Techniken werden vorwiegend	rschie-
Indirekter Nutzen aus Techniken, die in erster Linie zur Verringerung der Emissionen ar Schadstoffe angewendet werden d. Elektrostatischer Abscheider (ESP) 8.5. e. Gewebefilter Die Techniken werden vorwiegend	wer-
Indirekter Nutzen aus Techniken, die in erster Linie zur Verringerung der Emissionen ar Schadstoffe angewendet werden d. Elektrostatischer Siehe Beschreibungen in Abschnitt Allgemein anwendbar Abscheider (ESP) 8.5. e. Gewebefilter Die Techniken werden vorwiegend	ergie-
Indirekter Nutzen aus Techniken, die in erster Linie zur Verringerung der Emissionen ar Schadstoffe angewendet werden d. Elektrostatischer Siehe Beschreibungen in Abschnitt Abscheider (ESP) 8.5. e. Gewebefilter Die Techniken werden vorwiegend	taats
Schadstoffe angewendet werden d. Elektrostatischer Siehe Beschreibungen in Abschnitt Abscheider (ESP) e. Gewebefilter Die Techniken werden vorwiegend	
d. Elektrostatischer Siehe Beschreibungen in Abschnitt Allgemein anwendbar Abscheider (ESP) 8.5. e. Gewebefilter Die Techniken werden vorwiegend	derer
Abscheider (ESP) 8.5. e. Gewebefilter Die Techniken werden vorwiegend	
e. Gewebefilter Die Techniken werden vorwiegend	
zur Staubbekämpfung eingesetzt	
f. Trockenes oder Siehe Beschreibungen in Abschnitt	
halbtrockenes REA- 8.5.	
System Diese Techniken werden hauptsäch-	
g. Nass- lich für die Verminderung von SO _x , Angaben zur Anwendbarkeit:	siehe
Rauchgasentschwe- HCl und/oder HF eingesetzt BVT 25	
felung (Nass-REA)	

Der BVT-assoziierte Emissionswert für Quecksilberemissionen in die Luft aus der Verbrennung von fester Biomasse und/oder Torf beträgt als Mittelwert über den Zeitraum der Probennahme $< 1-5 \,\mu g/Nm^3$.

3. BVT-Schlussfolgerungen für die Verbrennung flüssiger Brennstoffe

Die in diesem Abschnitt dargelegten BVT-Schlussfolgerungen gelten nicht für Feuerungsanlagen auf Offshore-Bohrinseln; diese werden in Abschnitt 4.3 behandelt

3.1. HFO- und/oder gasölbefeuerte Kessel

Wenn nicht anders angegeben, sind die in diesem Abschnitt dargestellten BVT-Schlussfolgerungen allgemein auf die Verbrennung von HFO und/oder Gasöl in Kesseln anwendbar. Sie gelten zusätzlich zu den in Abschnitt 1 aufgeführten, allgemeinen BVT-Schlussfolgerungen.

3.1.1. Energieeffizienz

Tabelle 13 - BVT-assoziierte Energieeffizienzwerte für die Verbrennung von HFO und/oder Gasöl in Kesseln

	BVT-assoziierte Energieeffizienzwerte (¹) (²)			
Aut dan Voulenamen anaimh ait		lettowirkungs- (in %)		obrennstoffnut- d (in %) (³)
Art der Verbrennungseinheit	Neue Feue- rungseinheit	Bestehende Feuerungsein- heit	Neue Feue- rungseinheit	Bestehende Feuerungsein- heit
HFO- und/oder gasölbefeuerter Kessel	> 36,4	35,6-37,4	80-96	80-96

- (1) Diese BVT-assoziierten Energieeffizienzwerte gelten nicht für Anlagen mit < 1 500 Betriebsstunden pro Jahr.
- (2) Bei KWK-Anlagen gilt je nach der Konstruktionsweise der KWK-Anlage (d.h. eher auf Stromerzeugung oder eher auf Wärmeerzeugung ausgerichtet) nur einer der beiden BVT-assoziierten Energieeffizienzwerte "Elektrischer Nettowirkungsgrad" oder "Gesamter Nettobrennstoffnutzungsgrad".
- (3) Diese Werte sind möglicherweise nicht erreichbar, wenn der potenzielle Wärmebedarf zu niedrig ist.

3.1.2. NO_X- und CO-Emissionen in die Luft

BVT 28 Die BVT zur Vermeidung oder Verringerung von NO_X-Emissionen in die Luft bei gleichzeitiger Begrenzung der CO-Emissionen in die Luft, die bei der Verbrennung von HFO und/oder Gasöl in Kesseln entstehen, besteht in der Anwendung einer der folgenden Techniken oder einer Kombination der folgenden Techniken.

	Technik	Beschreibung	Anwendbarkeit
a.	Luftstufung	Siehe die Beschreibung in Abschnitt	Allgemein anwendbar
b.	Brennstoffstufung	8.3	
C.	Abgasrückführung		
d.	NO _x -arme Brenner		
	(LNB)		
e.	Hinzufügen von		Anwendbar innerhalb der durch die
	Wasser/Dampf		Verfügbarkeit von Wasser gesetzten
			Grenzen
f.	Selektive nichtkata-		Nicht anwendbar auf Feuerungsan-
	lytische Reduktion		lagen mit < 500 Betriebsstunden pro
	(SNCR)		Jahr und stark schwankenden Kes-
			sellasten.
			Die Anwendbarkeit kann bei Feue-
			rungsanlagen mit 500 bis 1 500 Be-
			triebsstunden pro Jahr und stark
			schwankenden Kessellasten einge-
			schränkt sein
g.	Selektive katalyti-	Siehe die Beschreibungen in Ab-	Nicht anwendbar auf Feuerungsan-
	sche Reduktion	schnitt 8.3	lagen mit < 500 Betriebsstunden pro
	(SCR)		Jahr.
			Hinsichtlich der Umrüstung beste-
			hender Feuerungsanlagen mit 500
			bis 1 500 Betriebsstunden pro Jahr
			können technische und wirtschaftli-
			che Einschränkungen bestehen.
			lst auf Feuerungsanlagen mit < 100
			MW _{th} . nicht allgemein anwendbar
h.	Modernes Steue-		Allgemein anwendbar auf neue Feu-
	rungssystem		erungsanlagen Die Anwendbarkeit
			auf alte Feuerungsanlagen kann
			durch die Notwendigkeit der Umrüs-
			tung des Feuerungssystems
			und/oder des Steuer- ungs- und Re-
			gelungssystems eingeschränkt sein

SOFTWARE MIT INHALTEN AUS EINER HAND!

Die rechtliche Vorsorgeuntersuchung für Unternehmen.

Nutzen Sie unsere gespeicherten Erfahrungen aus 26 Jahren Complianceberatung. Wir vermeiden die Haftung für Organisationsverschulden von Führungskräften. Sie müssen organisatorisch dafür sorgen, dass sie sich selbst und dass sich alle Mitarbeiter des Unternehmens legal verhalten. Dazu lassen sich alle Risiken und Pflichten eines Unternehmens mit unserem System ermitteln, delegieren, monatlich aktualisieren, erfüllen, kontrollieren, digital speichern und für alle jederzeit verfügbar halten. Die Verantwortlichen können digital abfragen, wer, welche Pflicht, an welchem Betriebsteil, wie zu erfüllen hat. Führungskräfte können auf einer Oberaufsichtsmaske mit einem Blick kontrollieren, ob alle Pflichten im Unternehmen erfüllt sind. Systematisch senken wir den Complianceaufwand durch Standardisierung um 60 %. Sachverhalte im Unternehmen wiederholen sich, verursachen gleiche Risiken und lösen gleiche Rechtspflichten zur Risikoabwehr aus. Rechtspflichten werden nur einmal geprüft, verlinkt, gespeichert und immer wieder mehrfach genutzt. Wir sind Rechtsanwälte mit eigenen Informatikern und bieten eine Softwarelösung mit Inhalten und präventiver Rechtsberatung aus einer Hand. Auf Anregungen aus den Unternehmen passen unsere EDV-Spezialisten die Software unseres Compliance-Management-Systems an. Der aktuelle Inhalt unserer Datenbank: 18.000 Rechtsvorschriften von EU, Bund, Ländern und Berufsgenossenschaften, 7.500 Gerichtsurteile, standardisierte Pflichtenkataloge für 45 Branchen und 57.000 vorformulierte Betriebspflichten. 44.000 Unternehmensrisiken sind mit 59.000 Rechtspflichten drei Millionen Mal verlinkt und gespeichert. Auf die Inhalte kommt es an. Je umfangreicher die Datenbank umso geringer ist das Risiko eine Unternehmenspflicht zu übersehen.

Weitere Informationen unter: www.rack-rechtsanwälte.de

	Technik	Beschreibung	Anwendbarkeit
i.	Brennstoffwahl		Anwendbar innerhalb der Grenzen,
			die durch die Verfügbarkeit verschie-
			dener Brennstoffarten gesetzt wer-
			den; diese kann durch die Energie-
			politik des jeweiligen Mitgliedstaats
			beeinflusst werden

Tabelle 14 - BVT-assoziierte Emissionswerte für NO_X-Emissionen in die Luft, die bei der Verbrennung von HFO und/oder Gasöl in Kesseln entstehen

	BVT-assoziierte Emissionswerte (mg/Nm³)				
Feuerungswärmeleistung der Feuerungsanlage (MW _{th})	Jahresm	ittelwert	wert über der	ert oder Mittel- n Zeitraum der nnahme	
	Neue Anlage	Bestehende Anlage (¹)	Neue Anlage	Bestehende Anlage (²)	
< 100	75-200	150-270	100-215	210-330 (³)	
≥ 100	45-75	45-100 (⁴)	85-100	85-110 (⁵) (⁶)	

- (1) Diese BVT-assoziierten Emissionswerte gelten nicht für Anlagen mit < 1 500 Betriebsstunden pro Jahr.
- (2) Bei Anlagen mit < 500 Betriebsstunden pro Jahr sind diese Werte als indikativ zu verstehen.
- (3) Bei vor dem 27. November 2003 in Betrieb genommenen Industriekesseln und Fernwärmeversorgungsanlagen mit < 1 500 Betriebsstunden pro Jahr, für die keine SCR und/oder SNCR angewendet werden kann, liegt das obere Ende des Wertebereichs der BVT-assoziierten Emissionswerte bei 450 mg/Nm³.
- (4) Das obere Ende des Wertebereichs der BVT-assoziierten Emissionswerte liegt für Anlagen mit 100-300 MW_{th} und Anlagen mit ≥ 300 MW_{th}, die vor dem 7. Januar 2014 in Betrieb genommen wurden, bei 110 mg/Nm³.
- (5) Das obere Ende des Wertebereichs der BVT-assoziierten Emissionswerte liegt für Anlagen mit 100-300 MW_{th} und Anlagen mit ≥ 300 MW_{th}, die vor dem 7. Januar 2014 in Betrieb genommen wurden, bei 145 mg/Nm³.
- (6) Bei vor dem 27. November 2003 in Betrieb genommenen Industriekesseln und Fernwärmeversorgungsanlagen mit >100 MW_{th} und < 1 500 Betriebsstunden pro Jahr, für die keine SCR und/oder SNCR angewendet werden kann, liegt das obere Ende des Wertebereichs der BVTassoziierten Emissionswerte bei 365 mg/Nm³.

Indikative Jahresmittelwerte der CO-Emissionen:

— 10-30 mg/Nm³ bei bestehenden Feuerungsanlagen mit < 100 MW_{th} und ≥ 1 500 Betriebsstunden pro Jahr oder bei neuen Feuerungsanlagen mit < 100 MW_{th}; 10-20 mg/Nm³ bei bestehenden Feuerungsanlagen mit ≥ 100 MW_{th} und
 ≥ 1 500 Betriebsstunden pro Jahr oder bei neuen Feuerungsanlagen mit
 > 100 MW_{th}.

3.1.3. SO_X-, HCI- und HF-Emissionen in die Luft

BVT 29 Die BVT zur Vermeidung oder Verringerung von SO_{X^-} , HCI- und HF-Emissionen in die Luft, die bei der Verbrennung von HFO und/oder Gasöl in Kesseln entstehen, besteht in der Anwendung einer der folgenden Techniken oder einer Kombination der folgenden Techniken.

	Technik	Beschreibung	Anwendbarkeit
a.	Kanaleinspritzung	Siehe die Beschreibung in Abschnitt	Allgemein anwendbar
	des Sorptionsmittels	8.4	
	(DSI)		
b.	Sprühabsorber im		
	Trockenverfahren		
	(SDA)		
c.	Abgaskondensator		
d.	Nass-		Hinsichtlich der Anwendung der
	Rauchgasentschwe-		Technik auf Feuerungsanlagen mit
	felung (Nass-REA)		< 300 MW _{th} können technische und
			wirtschaftliche Einschränkungen
			bestehen.
			Nicht anwendbar auf Feuerungsan-
			lagen mit < 500 Betriebsstunden pro
			Jahr.
			Hinsichtlich der Umrüstung beste-
			hender Feuerungsanlagen mit 500
			bis 1 500 Betriebsstunden pro Jahr
			können technische und wirtschaftli-
			che Einschränkungen bestehen

	Technik	Beschreibung	Anwendbarkeit
e.	Meerwasser-REA		Hinsichtlich der Anwendung der
			Technik auf Feuerungsanlagen mit
			< 300 MW _{th} können technische und
			wirtschaftliche Einschränkungen
			bestehen.
			Nicht anwendbar auf Feuerungsan-
			lagen mit < 500 Betriebsstunden pro
			Jahr.
			Hinsichtlich der Umrüstung beste-
			hender Feuerungsanlagen mit 500
			bis 1 500 Betriebsstunden pro Jahr
			können technische und wirtschaftli-
			che Einschränkungen bestehen
f.	Brennstoffwahl		Anwendbar innerhalb der Grenzen,
			die durch die Verfügbarkeit verschie-
			dener Brennstoffarten gesetzt wer-
			den; diese kann durch die Energie-
			politik des jeweiligen Mitgliedstaats
			beeinflusst werden

Tabelle 15 - BVT-assoziierte Emissionswerte für SO₂-Emissionen in die Luft, die bei der Verbrennung von HFO und/oder Gasöl in Kesseln entstehen

Feuerungswärmeleistung der	BVT-assoziierte Emissionswerte für SO ₂ (mg/Nm ³)			
Feuerungsanlage (MW)	Jahresmittelwei	rt	Tagesmittelwert über den Zeitraunahme	
	Neue Anlage	Bestehende Anlage (1)	Neue Anlage	Bestehende Anlage (²)
< 300	50-175	50-175	150-200	150-200 (³)
≥ 300	35-50	50-110	50-120	150-165 (⁴) (⁵)

⁽¹⁾ Diese BVT-assoziierten Emissionswerte gelten nicht für Anlagen mit < 1 500 Betriebsstunden pro Jahr.

- (2) Bei Anlagen mit < 500 Betriebsstunden pro Jahr sind diese Werte als indikativ zu verstehen.
- (³) Bei vor dem 27. November 2003 in Betrieb genommenen Industriekesseln und Fernwärmeversorgungsanlagen mit < 1 500 Betriebsstunden pro Jahr entspricht das obere Ende des Wertebereichs der BVT-assoziierten Emissionswerte 400 mg/Nm³.
- (4) Bei Anlagen, die vor dem 7. Januar 2014 in Betrieb genommen wurden, entspricht das obere Ende des Wertebereichs der BVT-assoziierten Emissionswerte 175 mg/Nm³.
- (5) Bei vor dem 27. November 2003 in Betrieb genommenen Industriekesseln und Fernwärmeversor-

gungsanlagen mit < 1 500 Betriebsstunden pro Jahr, für die keine Nass-REA angewendet werden kann, entspricht das obere Ende des Wertebereichs der BVT-assoziierten Emissionswerte 200 mg/Nm³.

3.1.4. Staub- und partikelgebundene Metallemissionen in die Luft

BVT 30 Die BVT zur Verringerung bei der Verbrennung von HFO und/oder Gasöl in Kesseln entstehender Staub- und partikelgebundener Metallemissionen in die Luft besteht in der Anwendung einer der folgenden Techniken oder einer Kombination der folgenden Techniken.

	Technik	Beschreibung	Anwendbarkeit
a.	Elektrostatischer	Siehe die Beschreibung in Abschnitt	Allgemein anwendbar
	Abscheider (ESP)	8.5	
b.	Gewebefilter		
C.	Multizyklone	Siehe die Beschreibung in Abschnitt	
		8.5.	
		Multizyklone können in Verbindung	
		mit anderen Entstaubungstechniken	
		eingesetzt werden	
d.	Trockenes oder	Siehe die Beschreibungen in Ab-	
	halbtrockenes REA-	schnitt 8.5.	
	System	Diese Technik wird hauptsächlich für	
		die Verminderung von SO _X , HCl un-	
		d/oder HF eingesetzt	
e.	Nass-	Siehe die Beschreibung in Abschnitt	Angaben zur Anwendbarkeit: siehe
	Rauchgasentschwe-	8.5.	BVT 29
	felung (Nass-REA)	Diese Technik wird hauptsächlich für	
		die Verminderung von SO _X , HCl un-	
		d/oder HF eingesetzt	
f.	Brennstoffwahl	Siehe die Beschreibung in Abschnitt	Anwendbar innerhalb der Grenzen,
		8.5	die durch die Verfügbarkeit verschie-
			dener Brennstoffarten gesetzt wer-
			den; diese kann durch die Energie-
			politik des jeweiligen Mitgliedstaats
			beeinflusst werden

Tabelle 16 - BVT-assoziierte Emissionswerte für Staubemissionen in die Luft, die bei der Verbrennung von HFO und/oder Gasöl in Kesseln entstehen

	BVT-assoziierte Emissionswerte für Staub (mg/Nm³)			
Feuerungswärmeleistung der Feuerungsanlage (MW _{th})	Jahresmittelwert		Tagesmittelwert oder Mittel- wert über den Zeitraum der Probennahme	
	Neue Anlage	Bestehende Anlage (¹)	Neue Anlage	Bestehende Anlage (²)
< 300	2-10	2-20	7-18	7-22 (³)
≥ 300	2-5	2-10	7-10	7-11 (⁴)

⁽¹⁾ Diese BVT-assoziierten Emissionswerte gelten nicht für Anlagen mit < 1 500 Betriebsstunden pro Jahr.

- (2) Bei Anlagen mit < 500 Betriebsstunden pro Jahr sind diese Werte als indikativ zu verstehen.
- (3) Bei Anlagen, die vor dem 7. Januar 2014 in Betrieb genommen wurden, entspricht das obere Ende des Wertebereichs der BVT-assoziierten Emissionswerte 25 mg/Nm³.
- (4) Bei Anlagen, die vor dem 7. Januar 2014 in Betrieb genommen wurden, entspricht das obere Ende des Wertebereichs der BVT-assoziierten Emissionswerte 15 mg/Nm³.

3.2. HFO- und/oder gasölbetriebene Motoren

Wenn nicht anders angegeben, sind die in diesem Abschnitt dargestellten BVT-Schlussfolgerungen allgemein auf die Verbrennung von HFO und/oder Gasöl in Kolbenmotoren anwendbar. Sie gelten zusätzlich zu den in Abschnitt 1 aufgeführten allgemeinen BVT-Schlussfolgerungen.

Was HFO- und/oder gasölbetriebene Motoren anbelangt, so sind sekundäre NO_{X^-} , SO_{2^-} und Feinstaub-Minderungstechniken aufgrund technischer, ökonomischer und logistischer Zwänge oder von Infrastrukturzwängen möglicherweise nicht auf Motoren in Strominseln anwendbar, die Teil eines kleinen, isolierten Netzes 4 oder eines isolierten Kleinstnetzes 5 sind, solange diese nicht an das Hauptstromnetz angeschlossen sind oder kein Zugang zu einer Erdgasversorgung besteht. Die BVT-assoziierten Emissionswerte für solche Motoren finden daher in kleinen, isolierten Netzen und isolierten Kleinstnetzen erst ab 1. Januar 2025 (neue Motoren) bzw. ab 1. Januar 2030 (existierende Motoren) Anwendung.

⁴ Im Sinne von Artikel 2 Nummer 26 der Richtlinie 2009/72/EG.

⁵ Im Sinne von Artikel 2 Nummer 27 der Richtlinie 2009/72/EG.

SOFTWARE MIT INHALTEN AUS EINER HAND!

Die rechtliche Vorsorgeuntersuchung für Unternehmen.

Nutzen Sie unsere gespeicherten Erfahrungen aus 26 Jahren Complianceberatung. Wir vermeiden die Haftung für Organisationsverschulden von Führungskräften. Sie müssen organisatorisch dafür sorgen, dass sie sich selbst und dass sich alle Mitarbeiter des Unternehmens legal verhalten. Dazu lassen sich alle Risiken und Pflichten eines Unternehmens mit unserem System ermitteln, delegieren, monatlich aktualisieren, erfüllen, kontrollieren, digital speichern und für alle jederzeit verfügbar halten. Die Verantwortlichen können digital abfragen, wer, welche Pflicht, an welchem Betriebsteil, wie zu erfüllen hat. Führungskräfte können auf einer Oberaufsichtsmaske mit einem Blick kontrollieren, ob alle Pflichten im Unternehmen erfüllt sind. Systematisch senken wir den Complianceaufwand durch Standardisierung um 60 %. Sachverhalte im Unternehmen wiederholen sich, verursachen gleiche Risiken und lösen gleiche Rechtspflichten zur Risikoabwehr aus. Rechtspflichten werden nur einmal geprüft, verlinkt, gespeichert und immer wieder mehrfach genutzt. Wir sind Rechtsanwälte mit eigenen Informatikern und bieten eine Softwarelösung mit Inhalten und präventiver Rechtsberatung aus einer Hand. Auf Anregungen aus den Unternehmen passen unsere EDV-Spezialisten die Software unseres Compliance-Management-Systems an. Der aktuelle Inhalt unserer Datenbank: 18.000 Rechtsvorschriften von EU, Bund, Ländern und Berufsgenossenschaften, 7.500 Gerichtsurteile, standardisierte Pflichtenkataloge für 45 Branchen und 57.000 vorformulierte Betriebspflichten. 44.000 Unternehmensrisiken sind mit 59.000 Rechtspflichten drei Millionen Mal verlinkt und gespeichert. Auf die Inhalte kommt es an. Je umfangreicher die Datenbank umso geringer ist das Risiko eine Unternehmenspflicht zu übersehen.

Weitere Informationen unter: www.rack-rechtsanwälte.de

3.2.1. Energieeffizienz

BVT 31 Die BVT zur Verbesserung der Energieeffizienz der Verbrennung von HFO und/oder Gasöl in Kolbenmotoren besteht in der Anwendung einer geeigneten Kombination der in BVT 12 und im Folgenden aufgeführten Techniken.

Technik	Beschreibung	Anwendbarkeit
Kombikraftwerk	Siehe Beschreibung	Allgemein anwendbar auf neue Anlagen mit ≥ 1 500
	in Abschnitt 8.2	Betriebsstunden pro Jahr
		Auf bestehende Anlagen anwendbar innerhalb der
		Grenzen des Dampfkraftprozesses und des verfüg-
		baren Raums.
		Nicht anwendbar auf bestehende Anlagen mit
		< 1 500 Betriebsstunden pro Jahr.
	T	Kombikraftwerk Siehe Beschreibung

Tabelle 17 - BVT-assoziierte Energieeffizienzwerte für die Verbrennung von HFO und/oder Gasöl in Kolbenmotoren

	BVT-assoziierte Energieeffizienzwerte (1) Elektrischer Nettowirkungsgrad (in %) (2)		
Art der Feuerungseinheit			
/ do. : odo. dingeoion	Neue Feuerungseinheit	Bestehende Feue-	
	Trodo i odorangoomion	rungseinheit	
Mit HFO und/oder Gasöl betriebener Kolbenmo-	41,5-44,5 (³)	38,3-44,5 (³)	
tor — Einfachzyklus			
Mit HFO und/oder Gasöl betriebener Kolbenmo-	> 48 (4)	Keine BVT-assoziierte	
tor — Kombizyklus		Energieeffizienzwerte	

- (1) Diese BVT-assoziierten Energieeffizienzwerte gelten nicht für Verbrennungseinheiten mit < 1 500 Betriebsstunden pro Jahr.
- (²) Die BVT-assoziierten Energieeffizienzwerte für den elektrischen Nettowirkungsgrad gelten für KWK-Anlagen, die auf Stromerzeugung ausgerichtet ist, sowie für Anlagen, die nur Strom erzeugen.
- (3) Diese Werte sind bei Motoren, die mit energieintensiver sekundärer Abgasreinigungstechnik ausgestattet sind, möglicherweise nur schwer zu erreichen.
- (4) Dieser Wert ist bei Motoren mit Kühlrippen als Kühlsystem an Standorten mit trockenem, heißem Klima möglicherweise nur schwer zu erreichen.

3.2.2. Emissionen von NO_X, CO und flüchtigen organischen Verbindungen (VOC) in die Luft

BVT 32 Die BVT zur Vermeidung oder Verringerung von NO_X-Emissionen aus der Verbrennung von HFO und/oder Gasöl in Kolbenmotoren in die Luft besteht in der Anwendung einer oder einer Kombination der folgenden Techniken.

	Technik	Beschreibung	Anwendbarkeit
a.	NO _x -armes Ver-	Siehe Beschreibungen in Abschnitt	Allgemein anwendbar
	brennungskonzept	8.3	
	bei Gasölmotoren		
b.	Abgasrückführung		Nicht anwendbar auf Viertaktmotoren
	(AGR)		
C.	Hinzufügen von		Anwendbar innerhalb der Grenzen
	Wasser/Dampf		der Wasserverfügbarkeit.
			In Fällen, in denen kein Nachrüstsatz
			verfügbar ist, kann die Anwendbar-
			keit eingeschränkt sein
d.	Selektive katalyti-		Nicht anwendbar auf Feuerungsan-
	sche Reduktion		lagen mit < 500 Betriebsstunden pro
	(SCR)		Jahr.
			Hinsichtlich der Nachrüstung beste-
			hender Feuerungsanlagen mit 500
			bis 1 500 Betriebsstunden pro Jahr
			können technische und wirtschaftli-
			che Einschränkungen bestehen.
			Die Möglichkeiten für die Nachrüs-
			tung bestehender Feuerungsanlagen
			können begrenzt sein, wenn nicht
			genügend Raum vorhanden ist

BVT 33 Die BVT zur Vermeidung oder Verringerung der CO- und VOC-Emissionen aus der Verbrennung von HFO und/oder Gasöl in Kolbenmotoren in die Luft besteht in der Anwendung einer oder beider der folgenden Techniken.

	Technik	Beschreibung	Anwendbarkeit
a.	Optimierung der Verbrennung		Allgemein anwendbar
b.	Oxidationskatalysat oren	Siehe Beschreibungen in Abschnitt 8.3	Nicht anwendbar auf Feuerungsan- lagen mit < 500 Betriebsstunden pro Jahr. Die Anwendbarkeit kann aufgrund des Schwefelgehalts des Brennstoffs eingeschränkt sein

Tabelle 18 - BVT-assoziierte Emissionswerte für NO_X-Emissionen aus der Verbrennung von HFO und/oder Gasöl in Kolbenmotoren in die Luft

Feuerungswärmeleistung der Feuerungsanlage (MW _{th})		assoziierte Emi	ssionswerte (mg/Nm³) Tagesmittelwert oder Mittelwert über den Zeitraum der Probennahme	
	Neue Anlage	Bestehende Anlage (1)	Neue Anlage	Bestehende Anlage (²) (³)
≥ 50	115-190 (⁴)	125-625	145-300	150-750

- (1) Diese BVT-assoziierten Emissionswerte gelten nicht für Anlagen mit < 1 500 Betriebsstunden pro Jahr und für Anlagen, die nicht mit sekundärer Abgasreinigungstechnik ausgerüstet werden können.
- (2) Die Bandbreite der BVT-assoziierten Emissionswerte entspricht bei Anlagen mit < 1 500 Betriebsstunden pro Jahr und bei Anlagen, die nicht mit sekundärer Abgasreinigungstechnik ausgerüstet werden können, 1 150-1 900 mg/Nm³.
- (3) Bei Anlagen mit < 500 Betriebsstunden pro Jahr sind diese Werte indikativ.
- (4) Bei Systemen, zu denen auch Feuerungsanlagen mit < 20 MW_{th} gehören, entspricht das für diese Anlagen geltende obere Ende der Bandbreite BVT-assoziierter Emissionswerte 225 mg/Nm³.

Für bestehende Feuerungsanlagen mit ≥ 1 500 Betriebsstunden pro Jahr, die nur HFO verfeuern, oder für neue Feuerungsanlagen, die nur HFO verfeuern,

- liegen die indikativen Jahresmittelwerte der CO-Emissionen zwischen 50 und 175 mg/Nm³;
- liegen die indikativen Mittelwerte der TVOC-Emissionen über den Zeitraum der Probennahme zwischen 10 und 40 mg/Nm³.

3.2.3. SO_X-, HCl- und HF-Emissionen in die Luft

BVT 34 Die BVT zur Vermeidung oder Verringerung von SO_{X^-} , HCI- und HF-Emissionen aus der Verbrennung von HFO und/oder Gasöl in Kolbenmotoren in die Luft besteht in der Anwendung einer oder einer Kombination der folgenden Techniken.

	Technik	Beschreibung	Anwendbarkeit
a.	Brennstoffwahl	Siehe Beschreibungen in Abschnitt	Anwendbar innerhalb der Grenzen
		8.4	der Verfügbarkeit verschiedener
			Brennstoffarten; diese kann durch
			die Energiepolitik des jeweiligen
			Mitgliedstaats beeinflusst werden.

	Technik	Beschreibung	Anwendbarkeit
b.	Kanal-		Bei bestehenden Feuerungsanlagen
	Sorptionsmittelein-		können technische Einschränkungen
	spritzung (DSI)		bestehen.
			Nicht anwendbar auf Feuerungsan-
			lagen mit < 500 Betriebsstunden pro
			Jahr.
c.	Nass-		Hinsichtlich der Anwendung der
	Rauchgasentschwe-		Technik auf Feuerungsanlagen mit <
	felung (Nass-REA)		300 MW _{th} . können technische und
			wirtschaftliche Einschränkungen
			bestehen.
			Nicht anwendbar auf Feuerungsan-
			lagen mit < 500 Betriebsstunden pro
			Jahr.
			Hinsichtlich der Nachrüstung beste-
			hender Feuerungsanlagen mit 500
			bis 1 500 Betriebsstunden pro Jahr
			können technische und wirtschaftli-
			che Einschränkungen bestehen.

Tabelle 19 - BVT-assoziierte Emissionswerte für SO₂-Emissionen aus der Verbrennung von HFO und/oder Gasöl in Kolbenmotoren in die Luft

	BVT-asso	oziierte Emissio	nswerte für SO ₂	(mg/Nm³)
Feuerungswärmeleistung der Feuerungsanlage (MW _{th})	Jahresmittelwert		wert über der	ert oder Mittel- n Zeitraum der nnahme
	Neue Anlage	Bestehende Anlage (¹)	Neue Anlage	Bestehende Anlage (²)
Alle Größen	45-100	100-200 (³)	60-110	105-235 (³)

⁽¹⁾ Diese BVT-assoziierten Emissionswerte gelten nicht für Anlagen mit < 1 500 Betriebsstunden pro Jahr.

- (2) Bei Anlagen mit < 500 Betriebsstunden pro Jahr sind diese Werte indikativ.
- (3) Das obere Ende der Bandbreite der BVT-assoziierten Emissionswerte entspricht 280 mg/Nm³, wenn keine sekundäre Abgasreinigungstechnik angewendet werden kann. Dies entspricht einem Schwefelgehalt des Brennstoffs von 0,5 Gew.-% (trocken).

3.2.4. Staub- und partikelgebundene Metallemissionen in die Luft

BVT 35 Die BVT zur Vermeidung oder Verringerung der Staubemissionen und partikelgebundenen Metallemissionen aus der Verbrennung von HFO und/oder Gasöl in Kolbenmotoren in die Luft besteht in der Anwendung einer oder einer Kombination der folgenden Techniken.

	Technik	Beschreibung	Anwendbarkeit
a.	Brennstoffwahl	Siehe Beschreibungen in Abschnitt	Anwendbar innerhalb der Grenzen
		8.5	der Verfügbarkeit verschiedener
			Brennstoffarten; diese kann durch
			die Energiepolitik des jeweiligen
			Mitgliedstaats beeinflusst werden
b.	Elektrostatischer		Nicht anwendbar auf Feuerungsan-
	Abscheider (ESP)		lagen mit < 500 Betriebsstunden pro
C.	Sackfilter		Jahr

Tabelle 20 - BVT-assoziierte Emissionswerte für Staubemissionen aus der Verbrennung von HFO und/oder Gasöl in Kolbenmotoren in die Luft

Feuerungswärmeleistung der Feuerungsanlage (MW _{th})		ziierte Emission iittelwert	Tagesmittelwert oder Mittelwert über den Zeitraum der Probennahme	
	Neue Anlage	Bestehende Anlage (³)	Neue Anlage	Bestehende Anlage (²)
≥ 50	5-10	5-35	10-20	10-45

⁽¹⁾ Diese BVT-assoziierten Emissionswerte gelten nicht für Anlagen mit < 1 500 Betriebsstunden pro

3.3. Gasölbetriebene Gasturbinen

Wenn nicht anders angegeben, sind die in diesem Abschnitt dargestellten BVT-Schlussfolgerungen allgemein auf die Verbrennung von Gasöl in Gasturbinen anwendbar. Diese BVT-Schlussfolgerungen gelten zusätzlich zu den allgemeinen BVT-Schlussfolgerungen, die in Abschnitt 10.1 festgelegt sind.

3.3.1. Energieeffizienz

BVT 36 Die BVT zur Erhöhung der Energieeffizienz der Verbrennung von Gasöl in Gasturbinen besteht in der Anwendung einer geeigneten Kombination der in BVT 12 und im Folgenden aufgeführten Techniken.

⁽²⁾ Bei Anlagen mit < 500 Betriebsstunden pro Jahr sind diese Werte indikativ.

SOFTWARE MIT INHALTEN AUS EINER HAND!

Die rechtliche Vorsorgeuntersuchung für Unternehmen.

Nutzen Sie unsere gespeicherten Erfahrungen aus 26 Jahren Complianceberatung. Wir vermeiden die Haftung für Organisationsverschulden von Führungskräften. Sie müssen organisatorisch dafür sorgen, dass sie sich selbst und dass sich alle Mitarbeiter des Unternehmens legal verhalten. Dazu lassen sich alle Risiken und Pflichten eines Unternehmens mit unserem System ermitteln, delegieren, monatlich aktualisieren, erfüllen, kontrollieren, digital speichern und für alle jederzeit verfügbar halten. Die Verantwortlichen können digital abfragen, wer, welche Pflicht, an welchem Betriebsteil, wie zu erfüllen hat. Führungskräfte können auf einer Oberaufsichtsmaske mit einem Blick kontrollieren, ob alle Pflichten im Unternehmen erfüllt sind. Systematisch senken wir den Complianceaufwand durch Standardisierung um 60 %. Sachverhalte im Unternehmen wiederholen sich, verursachen gleiche Risiken und lösen gleiche Rechtspflichten zur Risikoabwehr aus. Rechtspflichten werden nur einmal geprüft, verlinkt, gespeichert und immer wieder mehrfach genutzt. Wir sind Rechtsanwälte mit eigenen Informatikern und bieten eine Softwarelösung mit Inhalten und präventiver Rechtsberatung aus einer Hand. Auf Anregungen aus den Unternehmen passen unsere EDV-Spezialisten die Software unseres Compliance-Management-Systems an. Der aktuelle Inhalt unserer Datenbank: 18.000 Rechtsvorschriften von EU, Bund, Ländern und Berufsgenossenschaften, 7.500 Gerichtsurteile, standardisierte Pflichtenkataloge für 45 Branchen und 57.000 vorformulierte Betriebspflichten. 44.000 Unternehmensrisiken sind mit 59.000 Rechtspflichten drei Millionen Mal verlinkt und gespeichert. Auf die Inhalte kommt es an. Je umfangreicher die Datenbank umso geringer ist das Risiko eine Unternehmenspflicht zu übersehen.

Weitere Informationen unter: www.rack-rechtsanwälte.de

	Technik	Beschreibung	Anwendbarkeit
a.	Kombikraftwerk	Siehe die Beschreibung in Abschnitt	Allgemein anwendbar auf neue An-
	(GuD-Anlage)	8.2	lagen mit ≥ 1 500 Betriebsstunden
			pro Jahr.
			Auf bestehende Anlagen innerhalb
			der Grenzen anwendbar, die durch
			die Konstruktionsweise des Dampf-
			kreislaufs und den verfügbaren
			Raum gesetzt werden.
			Nicht anwendbar auf bestehende
			Anlagen mit < 1 500 Betriebsstunden
			pro Jahr

Tabelle 21 - BVT-assoziierte Energieeffizienzwerte für gasölbetriebene Gasturbinen

Art der Feuerungseinheit	BVT-assoziierte Energieeffizienzwerte (¹) Elektrischer Nettowirkungsgrad (in %) (²)		
Art der i ederdrigsermen	Neue Feuerungseinheit	Bestehende Feue- rungseinheit	
Gasölbetriebene Gasturbine mit offenem Kreis- lauf	> 33	25-35,7	
Gasölbetriebene Gasturbine — Kombikraftwerk (GuD-Anlage)	> 40	33-44	

⁽¹⁾ Diese BVT-assoziierten Energieeffizienzwerte gelten nicht für Anlagen mit < 1 500 Betriebsstunden pro Jahr.

3.3.2. NO_X- und CO-Emissionen in die Luft

BVT 37 Die BVT zur Vermeidung oder Verringerung von NO_X-Emissionen in die Luft, die bei der Verbrennung von Gasöl in Gasturbinen entstehen, besteht in der Anwendung einer der folgenden Techniken oder einer Kombination der folgenden Techniken.

	Technik	Beschreibung	Anwendbarkeit
a.	Hinzufügen von	Siehe die Beschreibung in Abschnitt	Die Anwendbarkeit kann Einschrän-
	Wasser/Dampf	8.3	kungen im Zusammenhang mit der
			Verfügbarkeit von Wasser unterlie-
			gen

⁽²) Die BVT-assoziierten Energieeffizienzwerte für den elektrischer Nettowirkungsgrad gelten für KWK-Anlagen, deren Konstruktionsweise auf Stromerzeugung ausgerichtet ist, sowie für Anlagen, die nur Strom erzeugen.

nenmodelle,
_X -arme
erungsan-
stunden pro
ng beste-
n mit 500
n pro Jahr
virtschaftli-
stehen.
Umrüstung
nlagen
enn nicht
ar ist

BVT 38 Die BVT zur Vermeidung oder Verringerung von CO-Emissionen in die Luft, die bei der Verbrennung von Gasöl in Gasturbinen entstehen, besteht in der Anwendung einer der folgenden Techniken oder einer Kombination der folgenden Techniken.

Tech	nik	Beschreibung	Anwendbarkeit
a.	Optimierung der Verbrennung	Siehe die Beschreibung in Abschnitt 8.3	Allgemein anwendbar
b.	Oxidationskatalysa- toren		Nicht anwendbar auf Feuerungsan- lagen mit < 500 Betriebsstunden pro Jahr. Die Möglichkeiten für die Umrüstung bestehender Feuerungsanlagen können begrenzt sein, wenn nicht genügend Raum verfügbar ist

Die indikativen Emissionswerte für bei der Verbrennung von Gasöl in Zweikraftstoff-Gasturbinen für den Notbetrieb mit < 500 Betriebsstunden pro Jahr entstehenden NO_X-Emissionen liegen als Tagesmittelwert oder als Mittelwert über den Zeitraum der Probennahme zwischen 145 und 250 mg/Nm³.

3.3.3. SO_X- und Staubemissionen in die Luft

BVT 39 Die BVT zur Vermeidung oder Verringerung von SO_X- und Staubemissionen

in die Luft, die bei der Verbrennung von Gasöl in Gasturbinen entstehen, besteht in der Anwendung der folgenden Technik.

	Technik	Beschreibung	Anwendbarkeit
a.	Brennstoffwahl	Siehe die Beschreibung in Abschnitt	Anwendbar innerhalb der Grenzen,
		8.4	die durch die Verfügbarkeit verschie-
			dener Brennstoffarten gesetzt wer-
			den; diese kann durch die Energie-
			politik des jeweiligen Mitgliedstaats
			beeinflusst werden

Tabelle 22 - BVT-assoziierte Emissionswerte für SO₂ -und Staubemissionen in die Luft, die bei der Verbrennung von Gasöl in Gasturbinen, unter Einschluss von Zweikraftstoff-Gasturbinen, entstehen

	BVT-	BVT-assoziierte Emissionswerte (mg/Nm³)			
	SO ₂		Staub		
Art der Feuerungsanlage	Jahresmittel- wert (¹)	Tagesmittel- wert oder Mit- telwert über den Zeitraum der Proben- nahme (²)	Jahresmittel- wert (¹)	Tagesmittel- wert oder Mit- telwert über den Zeitraum der Proben- nahme (²)	
Neue und bestehende Anlagen	35-60	50-66	2-5	2-10	

⁽¹) Diese BVT-assoziierten Emissionswerte gelten nicht für bestehende Anlagen mit < 1 500 Betriebsstunden pro Jahr.</p>

4. BVT-Schlussfolgerungen für die Verbrennung gasförmiger Brennstoffe

4.1. BVT-Schlussfolgerungen für die Verbrennung von Erdgas

Wenn nicht anders angegeben, sind die in diesem Abschnitt dargestellten BVT-Schlussfolgerungen allgemein auf die Verbrennung von Erdgas anwendbar. Sie gelten zusätzlich zu den in Abschnitt 1 aufgeführten allgemeinen BVT-Schlussfolgerungen. Sie gelten nicht für Feuerungsanlagen auf Offshore-Bohrinseln; diese werden in Abschnitt 4.3 behandelt.

4.1.1. Energieeffizienz

BVT 40 Die BVT zur Erhöhung der Energieeffizienz der Erdgasverbrennung besteht in der Anwendung einer geeigneten Kombination der in BVT 12 und im Folgenden aufgeführten Techniken.

⁽²⁾ Bei bestehenden Anlagen mit < 500 Betriebsstunden pro Jahr sind diese Werte indikativ.

	Technik	Beschreibung	Anwendbarkeit
a.	Kombikraftwerk	Siehe die Beschreibung in	Allgemein anwendbar auf neue Gasturbinen
	(GuD-Anlage)	Abschnitt 8.2	und -motoren, sofern ihre jährlichen Be-
			triebsstunden nicht < 1 500 betragen.
			Auf bestehende Gasturbinen und -motoren
			innerhalb der Grenzen anwendbar, die
			durch die Konstruktionsweise des Dampf-
			kreislaufs und den verfügbaren Raum ge-
			setzt werden.
			Nicht auf bestehende Gasturbinen und -
			motoren mit < 1 500 Betriebsstunden pro
			Jahr anwendbar.
			Nicht anwendbar auf Gasturbinen mit me-
			chanischem Antrieb, die diskontinuierlich
			mit großen Lastschwankungen und unter
			häufigem An- und Abfahren betrieben wer-
			den.
			Nicht auf Kessel anwendbar

Tabelle 23 - BVT-assoziierte Energieeffizienzwerte für die Erdgasverbrennung

	BVT-assoziierte Energieeffizienzwerte (³) (²)					
Art der Feuerungs-	Elektrischer Nettowir- kungsgrad (in %)		Gesamter Netto-	Mechanische Netto- energieeffizienz (in %) (⁴) (⁵)		
einheit	Neue Feue- rungsein- heit	Bestehen- de Feue- rungsein- heit	brennstoffnutzungs- grad (in %) (³) (⁴)	Neue Feue- rungsein- heit	Bestehende Feuerungs- einheit	
Gasmotor	39,5-44 (⁶)	35-44 (⁶)	56-8 5 (⁶)	Kein BVT-as Energieeffizi		
Gasbefeuerter Kessel	39-42,5	38-40	78-95	Kein BVT-assoziierter Energieeffizienzwert		
Gasturbine mit offenem Kreislauf, ≥ 50 MW _{th}	36-41,5	33-41,5	Kein BVT-assoziierter Energieeffizienzwert	36,5-41	33,5-41	
Kombikraftwerk (GuD-A	Kombikraftwerk (GuD-Anlage)					
GuD, 50-600 MW _{th}	53-58,5	46-54	Kein BVT-assoziierter Energieeffizienzwert	Kein BVT-assoziierter Energieeffizienzwert		
GuD, ≥ 600 MW _{th}	57-60,5	50-60	Kein BVT-assoziierter Energieeffizienzwert	Kein BVT-as Energieeffizi		

	BVT-assoziierte Energieeffizienzwerte (³) (²)				
Art der Feuerungs-	Elektrischer Nettowir- kungsgrad (in %)		Gesamter Netto- brennstoffnutzungs- grad (in %) (³) (⁴)	Mechanische Netto- energieeffizienz (in %) (⁴) (⁵)	
einheit	einheit Neue Feue- rungsein- heit			Neue Feue- rungsein- heit	Bestehende Feuerungs- einheit
KWK-GuD, 50-600	53-58,5	46-54	65-95	Kein BVT-as	soziierter
MW_{th}				Energieeffizi	enzwert
KWK-GuD, ≥ 600 MW _{th}	57-60,5	50-60	65-95	Kein BVT-assoziierter Energieeffizienzwert	

- (1) Diese BVT-assoziierten Energieeffizienzwerte gelten nicht für Anlagen mit < 1 500 Betriebsstunden pro Jahr.
- (²) Bei KWK-Anlagen gilt je nach der Konstruktionsweise der KWK-Anlage (d.h. eher auf Stromerzeugung oder eher auf Wärmeerzeugung ausgerichtet) nur einer der beiden BVT-assoziierten Energieeffizienzwerte "Elektrischer Nettowirkungsgrad" oder "Gesamter Nettobrennstoffnutzungsgrad".
- (3) Die BVT-assoziierten Energieeffizienzwerte für den gesamten Nettobrennstoffnutzungsgrad sind möglicherweise nicht erreichbar, wenn der potenzielle Wärmebedarf zu niedrig ist.
- (4) Diese BVT-assoziierten Energieeffizienzwerte gelten nicht für Anlagen, in denen nur Strom erzeugt wird.
- (5) Diese BVT-assoziierten Energieeffizienzwerte gelten nicht für Anlagen, die für mechanische Antriebe verwendet werden.
- (⁶) Diese Werte können bei Motoren, die auf die Erzielung von NO_X-Werten unter 190 mg/Nm³ eingestellt wurden, schwer zu erreichen sein.

4.1.2. NO_X-, CO-, NMVOC- und CH₄-Emissionen in die Luft

BVT 41 Die BVT zur Vermeidung oder Verringerung von NO_X-Emissionen in die Luft, die bei der Verbrennung von Erdgas in Kesseln entstehen, besteht in der Anwendung einer der folgenden Techniken oder einer Kombination der folgenden Techniken.

	Technik	Beschreibung	Anwendbarkeit
a.	Luft- und/oder	Siehe die Beschreibungen in Ab-	Allgemein anwendbar
	Brennstoffstufung	schnitt 8.3.	
		Luftstufung ist häufig mit NO _X -armen	
		Brennern verbunden	
b.	Abgasrückführung	Siehe die Beschreibung in Abschnitt	
c.	NO _X -arme Brenner	8.3	
	(LNB)		

SOFTWARE MIT INHALTEN AUS EINER HAND!

Die rechtliche Vorsorgeuntersuchung für Unternehmen.

Nutzen Sie unsere gespeicherten Erfahrungen aus 26 Jahren Complianceberatung. Wir vermeiden die Haftung für Organisationsverschulden von Führungskräften. Sie müssen organisatorisch dafür sorgen, dass sie sich selbst und dass sich alle Mitarbeiter des Unternehmens legal verhalten. Dazu lassen sich alle Risiken und Pflichten eines Unternehmens mit unserem System ermitteln, delegieren, monatlich aktualisieren, erfüllen, kontrollieren, digital speichern und für alle jederzeit verfügbar halten. Die Verantwortlichen können digital abfragen, wer, welche Pflicht, an welchem Betriebsteil, wie zu erfüllen hat. Führungskräfte können auf einer Oberaufsichtsmaske mit einem Blick kontrollieren, ob alle Pflichten im Unternehmen erfüllt sind. Systematisch senken wir den Complianceaufwand durch Standardisierung um 60 %. Sachverhalte im Unternehmen wiederholen sich, verursachen gleiche Risiken und lösen gleiche Rechtspflichten zur Risikoabwehr aus. Rechtspflichten werden nur einmal geprüft, verlinkt, gespeichert und immer wieder mehrfach genutzt. Wir sind Rechtsanwälte mit eigenen Informatikern und bieten eine Softwarelösung mit Inhalten und präventiver Rechtsberatung aus einer Hand. Auf Anregungen aus den Unternehmen passen unsere EDV-Spezialisten die Software unseres Compliance-Management-Systems an. Der aktuelle Inhalt unserer Datenbank: 18.000 Rechtsvorschriften von EU, Bund, Ländern und Berufsgenossenschaften, 7.500 Gerichtsurteile, standardisierte Pflichtenkataloge für 45 Branchen und 57.000 vorformulierte Betriebspflichten. 44.000 Unternehmensrisiken sind mit 59.000 Rechtspflichten drei Millionen Mal verlinkt und gespeichert. Auf die Inhalte kommt es an. Je umfangreicher die Datenbank umso geringer ist das Risiko eine Unternehmenspflicht zu übersehen.

Weitere Informationen unter: www.rack-rechtsanwälte.de

	Technik	Beschreibung	Anwendbarkeit
d.	Modernes Steue-	Siehe die Beschreibung in Abschnitt	Die Anwendbarkeit auf alte Feue-
	rungssystem	8.3.	rungsanlagen kann durch die Not-
		Diese Technik wird häufig in Verbin-	wendigkeit der Umrüstung des Feue-
		dung mit anderen Techniken einge-	rungssystems und/oder des Steue-
		setzt, kann aber bei Feuerungsanla-	rungs- und Regelungssystems ein-
		gen mit < 500 Betriebsstunden im	geschränkt sein
		Jahr auch allein genutzt werden	
e.	Senkung der Ver-	Siehe die Beschreibung in Abschnitt	Innerhalb der durch die Erfordernisse
	brennungslufttempe-	8.3	des Prozesses gesetzten Grenzen
	ratur		allgemein anwendbar
f.	Selektive nichtkata-		Nicht anwendbar auf Feuerungsan-
	lytische Reduktion		lagen mit < 500 Betriebsstunden pro
	(SNCR)		Jahr und stark schwankenden Kes-
			sellasten.
			Die Anwendbarkeit kann bei Feue-
			rungsanlagen mit 500 bis 1 500 Be-
			triebsstunden pro Jahr und stark
			schwankenden Kessellasten einge-
			schränkt sein
g.	Selektive katalyti-		Nicht anwendbar auf Feuerungsan-
	sche Reduktion		lagen mit < 500 Betriebsstunden pro
	(SCR)		Jahr.
			lst auf Feuerungsanlagen mit < 100
			MW _{th} . nicht allgemein anwendbar.
			Hinsichtlich der Umrüstung beste-
			hender Feuerungsanlagen mit 500
			bis 1 500 Betriebsstunden pro Jahr
			können technische und wirtschaftli-
			che Einschränkungen bestehen

BVT 42 Die BVT zur Vermeidung oder Verringerung von NO_X-Emissionen in die Luft, die bei der Verbrennung von Erdgas in Gasturbinen entstehen, besteht in der Anwendung einer der folgenden Techniken oder einer Kombination der folgenden Techniken.

	Technik	Beschreibung	Anwendbarkeit
a.	Modernes Steue-	Siehe die Beschreibung in Abschnitt	Die Anwendbarkeit auf alte Feue-
	rungssystem	8.3.	rungsanlagen kann durch die Not-
		Diese Technik wird häufig in Verbin-	wendigkeit der Umrüstung des Feue-
		dung mit anderen Techniken einge-	rungssystems und/oder des Steue-
		setzt, kann aber bei Feuerungsanla-	rungs- und Regelungssystems ein-
		gen mit < 500 Betriebsstunden im	geschränkt sein
		Jahr auch allein genutzt werden	
b.	Hinzufügen von	Siehe die Beschreibung in Abschnitt	Die Anwendbarkeit kann Einschrän-
	Wasser/Dampf	8.3	kungen im Zusammenhang mit der
			Verfügbarkeit von Wasser unterlie-
			gen
C.	NO _x -arme		Bei Turbinen, für die kein Umrüstsatz
	Trockenbrenner		verfügbar ist, oder in Fällen, in denen
	(DLN)		Systeme zum Hinzufügen von Was-
			ser/Dampf installiert sind, kann die
			Anwendbarkeit eingeschränkt sein
d.	Konstruktionskon-	Anpassung der Prozessregelung	Die Anwendbarkeit kann durch die
	zepte für Schwach-	und der zugehörigen Geräte zur	Konstruktionsweise der Gasturbine
	last	Aufrechterhaltung einer guten Ver-	eingeschränkt sein
		brennungseffizienz bei schwanken-	
		dem Energiebedarf, z.B. durch die	
		Verbesserung der Regelungskapazi-	
		tät für die einströmende Luft oder	
		durch die Aufteilung des Verbren-	
		nungsvorgangs in entkoppelte Ver-	
		brennungsstufen	
e.	NO _x -arme Brenner	Siehe die Beschreibung in Abschnitt	Allgemein anwendbar auf die Zu-
	(LNB)	8.3	satzbefeuerung für Abhitzedampfe-
			zeuger (HRSG) bei Kombikraftwer-
			ken (GuD-Anlage)

	Technik	Beschreibung	Anwendbarkeit
f.	Selektive katalyti-		Bei Feuerungsanlagen mit < 500 Be-
	sche Reduktion		triebsstunden pro Jahr nicht allge-
	(SCR)		mein anwendbar.
			Auf bestehende Feuerungsanlagen
			mit <100 MW _{th} nicht allgemein an-
			wendbar.
			Die Möglichkeiten für die Umrüstung
			bestehender Feuerungsanlagen
			können begrenzt sein, wenn nicht
			genügend Raum verfügbar ist.
			Hinsichtlich der Umrüstung beste-
			hender Feuerungsanlagen mit 500
			bis 1 500 Betriebsstunden pro Jahr
			können technische und wirtschaftli-
			che Einschränkungen bestehen

BVT 43 Die BVT zur Vermeidung oder Verringerung von NO_X-Emissionen in die Luft, die bei der Verbrennung von Erdgas in Motoren entstehen, besteht in der Anwendung einer der folgenden Techniken oder einer Kombination der folgenden Techniken.

	Technik	Beschreibung	Anwendbarkeit
a.	Modernes Steue-	Siehe die Beschreibung in Abschnitt	Die Anwendbarkeit auf alte Feue-
	rungssystem	8.3.	rungsanlagen kann durch die Not-
		Diese Technik wird häufig in Verbin-	wendigkeit der Umrüstung des Feue-
		dung mit anderen Techniken einge-	rungssystems und/oder des Steue-
		setzt, kann aber bei Feuerungsanla-	rungs- und Regelungssystems ein-
		gen mit < 500 Betriebsstunden im	geschränkt sein
		Jahr auch allein genutzt werden	
b.	Magermixkonzept	Siehe die Beschreibung in Abschnitt	Nur auf neue gasbefeuerte Motoren
		8.3.	anwendbar
		Allgemein in Verbindung mit SCR	
		angewendet	

	Technik	Beschreibung	Anwendbarkeit
C.	Modernes Mager-	Siehe die Beschreibung in Abschnitt	Nur auf Motoren mit neuen Zündker-
	mixkonzept	8.3	zen anwendbar
d.	Selektive katalyti-		Die Möglichkeiten für die Umrüstung
	sche Reduktion		bestehender Feuerungsanlagen
	(SCR)		können begrenzt sein, wenn nicht
			genügend Raum verfügbar ist.
			Nicht auf Feuerungsanlagen mit
			< 500 Betriebsstunden pro Jahr an-
			wendbar.
			Hinsichtlich der Umrüstung beste-
			hender Feuerungsanlagen mit 500
			bis 1 500 Betriebsstunden pro Jahr
			können technische und wirtschaftli-
			che Einschränkungen bestehen

BVT 44 Die BVT zur Vermeidung oder Verringerung von CO-Emissionen in die Luft, die bei der Verbrennung von Erdgas entstehen, besteht in der Sicherstellung einer optimierten Verbrennung und/oder der Nutzung von Oxidationskatalysatoren.

Beschreibung

Siehe die Beschreibungen in Abschnitt 8.3.

Tabelle 24 - BVT-assoziierte Emissionswerte für NO_X-Emissionen in die Luft, die bei der Verbrennung von Erdgas in Gasturbinen entstehen

	Feuerungs-	BVT-assoziierte Emissionswerte (mg/Nm³) (¹) (²)				
Art der Feuerungsanlage	wärmeleistung der Feue- rungsanlage (MW _{th})	Jahresmittel- wert (³) (⁴)	Tagesmittelwert oder Mittelwert über den Zeit- raum der Pro- bennahme			
Gasturbinen mit offenem Kreislauf (OCGT) (5)	(⁶)					
Neue OCGT	≥ 50	15-35	25-50			
Bestehende OCGT (für mechanische Antriebe verwendete Turbinen sind ausgeschlossen) — alle außer Anlagen mit < 500 Betriebsstunden pro Jahr	≥ 50	15-50	25-55 (⁷)			
Kombikraftwerke (GuD-Anlagen) (5) (8)	Kombikraftwerke (GuD-Anlagen) (⁵) (˚)					
Neue GuD	≥ 50	10-30	15-40			

	Feuerungs-	BVT-assoziierte Emissionswerte (mg/Nm³) (¹) (²)	
Art der Feuerungsanlage	wärmeleistung der Feue- rungsanlage (MW _{th})	Jahresmittel- wert (³) (⁴)	Tagesmittelwert oder Mittelwert über den Zeit- raum der Pro- bennahme
Bestehende GuD mit einem gesamten Netto-	≥ 600	10-40	18-50
brennstoffnutzungsgrad von < 75 %			
Bestehende GuD mit einem gesamten Netto-	≥ 600	10-50	18-55 (⁹)
brennstoffnutzungsgrad von > 75 %			
Bestehende GuD mit einem gesamten Netto-	50-600	10-45	35-55
brennstoffnutzungsgrad von < 75 %			
Bestehende GuD mit einem gesamten Netto-	50-600	25-50 (¹⁰)	35-55 (ⁿ)
brennstoffnutzungsgrad von > 75 %			
Gasturbinen mit offenem Kreislauf und Gas-/I	Dampf-Turbinen		
Vor dem 27. November 2003 in Betrieb genom-	≥ 50	keine BVT-	60-140 (¹²) (¹³)
mene Gasturbinen oder bestehende Gasturbi-		assoziierten	
nen für den Notbetrieb mit < 500 Betriebsstun-		Emissionswerte	
den pro Jahr			
Bestehende, für mechanische Antriebe verwen-	≥ 50	15-50 (¹⁴)	25-55 (¹⁵)
dete Turbinen sind ausgeschlossen — alle au-			
ßer Anlagen mit < 500 Betriebsstunden pro Jahr			

- (1) Diese BVT-assoziierten Emissionswerte gelten auch für die Verbrennung von Erdgas in Turbinen mit Zweikraftstofffeuerung.
- (²) Bei mit DLN ausgestatteten Gasturbinen gelten diese BVT-assoziierten Emissionswerte nur, wenn der DLN-Betrieb wirksam ist.
- (3) Diese BVT-assoziierten Emissionswerte gelten nicht für bestehende Anlagen mit < 1 500 Betriebsstunden pro Jahr.
- (4) Eine Optimierung der Funktionsweise einer bestehenden Technik zur weiteren Senkung der NO_X-Emissionen kann dazu führen, dass die CO-Emissionswerte an das obere Ende des im Anschluss an die folgende Tabelle aufgeführten indikativen Wertebereichs für CO-Emissionen verschoben werden.
- (5) Diese BVT-assoziierten Emissionswerte gelten nicht für bestehende, für mechanische Antriebe verwendete Turbinen oder Anlagen mit < 500 Betriebsstunden pro Jahr.
- (6) Bei Anlagen mit einem elektrischen Nettowirkungsgrad (EE) über 39 % kann auf das obere Ende des Wertebereichs ein Korrekturfaktor angewendet werden, der [oberes Ende] x EE/39 entspricht und bei dem EE der bei ISO-Grundlastbedingungen bestimmte elektrische Nettowirkungsgrad oder mechanische Nettowirkungsgrad der Anlage ist.
- (7) Bei Anlagen, die vor dem 27. November 2003 in Betrieb genommen wurden und zwischen 500

SOFTWARE MIT INHALTEN AUS EINER HAND!

Die rechtliche Vorsorgeuntersuchung für Unternehmen.

Nutzen Sie unsere gespeicherten Erfahrungen aus 26 Jahren Complianceberatung. Wir vermeiden die Haftung für Organisationsverschulden von Führungskräften. Sie müssen organisatorisch dafür sorgen, dass sie sich selbst und dass sich alle Mitarbeiter des Unternehmens legal verhalten. Dazu lassen sich alle Risiken und Pflichten eines Unternehmens mit unserem System ermitteln, delegieren, monatlich aktualisieren, erfüllen, kontrollieren, digital speichern und für alle jederzeit verfügbar halten. Die Verantwortlichen können digital abfragen, wer, welche Pflicht, an welchem Betriebsteil, wie zu erfüllen hat. Führungskräfte können auf einer Oberaufsichtsmaske mit einem Blick kontrollieren, ob alle Pflichten im Unternehmen erfüllt sind. Systematisch senken wir den Complianceaufwand durch Standardisierung um 60 %. Sachverhalte im Unternehmen wiederholen sich, verursachen gleiche Risiken und lösen gleiche Rechtspflichten zur Risikoabwehr aus. Rechtspflichten werden nur einmal geprüft, verlinkt, gespeichert und immer wieder mehrfach genutzt. Wir sind Rechtsanwälte mit eigenen Informatikern und bieten eine Softwarelösung mit Inhalten und präventiver Rechtsberatung aus einer Hand. Auf Anregungen aus den Unternehmen passen unsere EDV-Spezialisten die Software unseres Compliance-Management-Systems an. Der aktuelle Inhalt unserer Datenbank: 18.000 Rechtsvorschriften von EU, Bund, Ländern und Berufsgenossenschaften, 7.500 Gerichtsurteile, standardisierte Pflichtenkataloge für 45 Branchen und 57.000 vorformulierte Betriebspflichten. 44.000 Unternehmensrisiken sind mit 59.000 Rechtspflichten drei Millionen Mal verlinkt und gespeichert. Auf die Inhalte kommt es an. Je umfangreicher die Datenbank umso geringer ist das Risiko eine Unternehmenspflicht zu übersehen.

Weitere Informationen unter: www.rack-rechtsanwälte.de

		BVT-assoziierte	Emissionswerte
	Feuerungs-	(mg/Nm³) (¹) (²)	
	wärmeleistung		Tagesmittelwert
Art der Feuerungsanlage	der Feue-	Jahresmittel-	oder Mittelwert
	rungsanlage	wert (³) (⁴)	über den Zeit-
	(MW _{th})	weit () ()	raum der Pro-
			bennahme

und 1 500 Betriebsstunden pro Jahr haben, liegt das obere Ende des Wertebereichs bei 80 mg/Nm³.

- (8) Bei Anlagen mit einem elektrischen Nettowirkungsgrad (EE) über 55 % kann auf das obere Ende des BVT-assoziierten Emissionswertebereichs ein Korrekturfaktor angewendet werden, der [oberes Ende] x EE/55 entspricht und bei dem EE der bei ISO-Grundlastbedingungen bestimmte elektrische Nettowirkungsgrad der Anlage ist.
- (9) Bei bestehenden Anlagen, die vor dem 7. Januar 2014 in Betrieb genommen wurden, entspricht das obere Ende des BVT-assoziierten Emissionswertebereichs 65 mg/Nm³.
- (10) Bei bestehenden Anlagen, die vor dem 7. Januar 2014 in Betrieb genommen wurden, entspricht das obere Ende des BVT-assoziierten Emissionswertebereichs 55 mg/Nm³.
- (11) Bei bestehenden Anlagen, die vor dem 7. Januar 2014 in Betrieb genommen wurden, entspricht das obere Ende des BVT-assoziierten Emissionswertebereichs 80 mg/Nm³.
- (¹²) Das untere Ende des BVT-assoziierten Emissionswertebereichs für NO_X ist mit DLN-Brennern erreichbar.
- (13) Diese Werte sind als Beispiel zu verstehen.
- (14) Bei bestehenden Anlagen, die vor dem 7. Januar 2014 in Betrieb genommen wurden, entspricht das obere Ende des BVT-assoziierten Emissionswertebereichs 60 mg/Nm³.
- (15) Bei bestehenden Anlagen, die vor dem 7. Januar 2014 in Betrieb genommen wurden, entspricht das obere Ende des BVT-assoziierten Emissionswertebereichs 65 mg/Nm³.

Die indikativen Jahresmittelwerte der CO-Emissionen für die einzelnen Arten bestehender Feuerungsanlagen mit ≥ 1 500 Betriebsstunden pro Jahr und die einzelnen Arten neuer Feuerungsanlagen lauten wie folgt:

- Neue OCGT mit ≥ 50 MW_{th}: < 5-40 mg/Nm³. Bei Anlagen mit einem elektrischen Nettowirkungsgrad (EE) über 39 % kann auf das obere Ende dieses Wertebereichs ein Korrekturfaktor angewendet werden, der [oberes Ende] × EE/39 entspricht und bei dem EE der bei ISO-Grundlastbedingungen bestimmte elektrische Nettowirkungsgrad oder mechanische Nettowirkungsgrad der Anlage ist.</p>
- Bestehende OCGT mit ≥ 50 MW_{th} (für mechanische Antriebe verwendete Turbinen sind ausgeschlossen): < 5-40 mg/Nm³. Das obere Ende dieses

Wertebereichs wird bei bestehenden Anlagen, die nicht mit Trockentechniken zur NO_X-Reduktion ausgestattet werden können, im Allgemeinen bei 80 mg/Nm³ liegen; bei mit niedriger Last betriebenen Anlagen liegt es bei 50 mg/Nm³.

- Neue GuD mit ≥ 50 MW_{th}: < 5-30 mg/Nm³. Bei Anlagen mit einem elektrischen Nettowirkungsgrad (EE) über 55 % kann auf das obere Ende des BVT-assoziierten Emissionswertebereichs ein Korrekturfaktor angewendet werden, der [oberes Ende] x EE/55 entspricht und bei dem EE der bei ISO-Grundlastbedingungen bestimmte elektrische Nettowirkungsgrad der Anlage ist.</p>
- Bestehende GuD mit 50 MW_{th}: < 5-30 mg/Nm³. Bei mit niedriger Last arbeitenden Anlagen wird das obere Ende dieses Wertebereichs im Allgemeinen bei 50 mg/Nm³ liegen.
- Bestehende Gasturbinen mit ≥ 50 MW_{th} zur Anwendung als mechanischer Antrieb: < 5-40 mg/Nm³. Das obere Ende dieses Wertebereichs wird im Allgemeinen bei 50 mg/Nm³ liegen, wenn die Anlagen mit niedriger Last arbeiten.

Bei mit DLN-Brennern ausgestatteten Gasturbinen beziehen sich diese indikativen Werte auf den wirksamen DLN-Betrieb.

Tabelle 25 - BVT-assoziierte Emissionswerte für NO_X-Emissionen in die Luft, die bei der Verbrennung von Erdgas in Kesseln und Motoren entstehen

	BVT-assoziierte Emissionswerte (mg/Nm³)				
Art der Feuerungsanlage	Jahresmittelwert (¹)		Tagesmittelwert oder Mittel- wert über den Zeitraum der Probennahme		
	Neue Anlage	Bestehende Anlage (²)	Neue Anlage	Bestehende Anlage (³)	
Kessel	10-60	50-100	30-85	85-110	
Motor (4)	20-75	20-100	55-85	55-110 (⁵)	

⁽¹) Eine Optimierung der Funktionsweise einer bestehenden Technik zur weiteren Senkung der NO_X-Emissionen kann dazu führen, dass die CO-Emissionswerte an das obere Ende des im Anschluss an die folgende Tabelle aufgeführten Wertebereichs für CO-Emissionen verschoben werden.

⁽²⁾ Diese BVT-assoziierten Emissionswerte gelten nicht für Anlagen mit < 1 500 Betriebsstunden pro Jahr.

⁽³⁾ Bei Anlagen mit < 500 Betriebsstunden pro Jahr sind diese Werte indikativ.

Art der Feuerungsanlage	BVT-assoziierte Emissionswerte (mg/Nm³)			
	Jahresmittelwert (¹)		Tagesmittelwert oder Mittel- wert über den Zeitraum der Probennahme	
	Neue Anlage	Bestehende Anlage (²)	Neue Anlage	Bestehende Anlage (³)

- (4) Diese BVT-assoziierten Emissionswerte gelten nur für fremdgezündete und für Zweistoff-Motoren. Sie gelten nicht für Gas-Diesel-Motoren.
- (5) Bei Motoren für den Notbetrieb mit < 500 Betriebsstunden pro Jahr, bei denen weder das Magermixkonzept angewendet noch SCR genutzt werden konnte, liegt das obere Ende des beispielhaften Wertebereichs bei 175 mg/Nm³.

Die indikativen Jahresmittelwerte der CO-Emissionen lauten wie folgt:

- < 5-40 mg/Nm³ bei bestehenden Kesseln mit ≥ 1 500 Betriebsstunden pro Jahr;
- < 5-15 mg/Nm³ bei neuen Kesseln;</p>
- 30-100 mg/Nm³ bei bestehenden Motoren mit ≥ 1 500 Betriebsstunden pro Jahr und bei neuen Motoren.

BVT 45 Die BVT zur Verringerung der Emissionen flüchtiger organischer Verbindungen ohne Methan (NMVOC) und Methan (CH₄) in die Luft, die bei der Verbrennung von Erdgas in fremdgezündeten MagerGasmotoren entstehen, besteht in der Sicherstellung einer optimierten Verbrennung und/oder der Nutzung von Oxidationskatalysatoren.

Beschreibung

Siehe die Beschreibungen in Abschnitt 8.3. Oxidationskatalysatoren sind bei der Verringerung der Emission gesättigter Kohlenwasserstoffe mit weniger als vier Kohlenstoffatomen nicht wirksam.

Tabelle 26 - BVT-assoziierte Emissionswerte für Formaldehyd- und CH₄-Emissionen in die Luft, die bei der Verbrennung von Erdgas in einem fremdgezündeten Mager-Gasmotor entstehen

	BVT-assoziierte Emissionswerte (mg/Nm³)			
Feuerungswärmeleistung	Formaldehyd	CH₄		
(MW _{th}) der Feuerungsanla-	er den Zeitraum der Probenahme			
ge	Neue oder bestehen-	. Neue Anlage Bestehende Anl		
	de Anlage	Neue Amage	Destenence Amage	
≥ 50	5-15«	215-500 (²)	215-560 (!) (²)	
(1) Bei bestehenden Anlagen n	en Anlagen mit < 500 Betriebsstunden pro Jahr sind diese Werte indikativ.			

	BVT-assoziierte Emissionswerte (mg/Nm³)			
Feuerungswärmeleistung	Formaldehyd	CH₄		
(MW _{th}) der Feuerungsanla-	Mittelwert über den Zeitraum der Probenahme			
ge	Neue oder bestehen- Neue Anlage Bestehende Anlage		Bestehende Anlage	
	de Anlage	rtouo / unago	200tononao 7tmago	
²) Dieser BVT-assoziierte Emissionswert wird als C bei Volllastbetrieb ausgedrückt.				

4.2. BVT-Schlussfolgerungen für die Verbrennung von Prozessgasen aus der Eisen- und Stahlherstellung

Wenn nicht anders angegeben, sind die in diesem Abschnitt dargestellten BVT-Schlussfolgerungen allgemein auf die einzeln, kombiniert oder gleichzeitig mit anderen gasförmigen und/oder flüssigen Brennstoffen erfolgende Verbrennung von Prozessgasen aus der Eisen- und Stahlherstellung (Hochofengas, Kokereigas, Konvertergas) anwendbar. Sie gelten zusätzlich zu den in Abschnitt 1 aufgeführten allgemeinen BVT-Schlussfolgerungen.

4.2.1. Energieeffizienz

BVT 46 Die BVT zur Erhöhung der Energieeffizienz der Verbrennung von Prozessgasen aus der Eisen- und Stahlherstellung besteht in der Anwendung einer geeigneten Kombination der in BVT 12 und im Folgenden aufgeführten Techniken.

		Technik	Beschreibung	Anwendbarkeit
а	١.	Managementsystem	Siehe die Beschreibung in Abschnitt	Gilt nur für integrierte Stahlwerke
		für Prozessgase	8.2	

Tabelle 27 - BVT-assoziierte Energieeffizienzwerte für die Verbrennung von Prozessgasen aus der Eisen- und Stahlherstellung in Kesseln

	BVT-assoziierte Energieeffizienzwerte (¹) (²)		
Art der Feuerungseinheit	Elektrischer Nettowir-	Gesamter Nettobrenn-	
	kungsgrad (in %)	stoffnutzungsgrad (in	
		%) (³)	
Bestehender Gaskessel mit Mehrstofffeuerung	30-40	50-84	
Neuer Gaskessel mit Mehrstofffeuerung (4)	36-42,5	50-84	

- (1) Diese BVT-assoziierten Energieeffizienzwerte gelten nicht bei Anlagen mit < 1 500 Betriebsstunden pro Jahr.
- (2) Bei KWK-Anlagen gilt je nach der Konstruktionsweise der KWK-Anlage (d.h. eher auf Stromerzeugung oder eher auf Wärmeerzeugung ausgerichtet) nur einer der beiden BVT-assoziierten Energieeffizienzwerte "Elektrischer Nettowirkungsgrad" oder "Gesamter Nettobrennstoffnutzungsgrad".
- (3) Diese BVT-assoziierten Energieeffizienzwerte gelten nicht für Anlagen, in denen nur Strom erzeugt wird.
- (4) Die große Bandbreite an Energieeffizienzen bei KWK-Anlagen hängt zu einem großen Teil von der örtlichen Nachfrage nach Strom und Wärme ab.

Tabelle 28 - BVT-assoziierte Energieeffizienzwerte für die Verbrennung von Prozessgasen aus der Eisen- und Stahlherstellung in GuD

Art der Feuerungseinheit	BVT-assoziierte Energieeffizienzwerte (¹) (²)		
	Elektrischer Nettowirkungsgrad (in %)		Gesamter Netto-
	Neue Anlage	Bestehende Anlage	brennstoffnutzungs- grad (in %) (³)
KWK-GuD	> 47	40-48	60-82
GuD	> 47	40-48	Kein BVT-assoziierter Energieeffizienzwert

- (1) Diese BVT-assoziierten Energieeffizienzwerte gelten nicht bei Anlagen mit < 1 500 Betriebsstunden pro Jahr.
- (2) Bei KWK-Anlagen gilt je nach der Konstruktionsweise der KWK-Anlage (d.h. eher auf Stromerzeugung oder eher auf Wärmeerzeugung ausgerichtet) nur einer der beiden BVT-assoziierten Energieeffizienzwerte "Elektrischer Nettowirkungsgrad" oder "Gesamter Nettobrennstoffnutzungsgrad".
- (3) Diese BVT-assoziierten Energieeffizienzwerte gelten nicht für Anlagen, in denen nur Strom erzeugt wird.

4.2.2. NO_X- und CO-Emissionen in die Luft

BVT 47 Die BVT zur Vermeidung oder Verringerung von NO_X-Emissionen in die Luft, die bei der Verbrennung von Prozessgasen aus der Eisen- und Stahlherstellung in

SOFTWARE MIT INHALTEN AUS EINER HAND!

Die rechtliche Vorsorgeuntersuchung für Unternehmen.

Nutzen Sie unsere gespeicherten Erfahrungen aus 26 Jahren Complianceberatung. Wir vermeiden die Haftung für Organisationsverschulden von Führungskräften. Sie müssen organisatorisch dafür sorgen, dass sie sich selbst und dass sich alle Mitarbeiter des Unternehmens legal verhalten. Dazu lassen sich alle Risiken und Pflichten eines Unternehmens mit unserem System ermitteln, delegieren, monatlich aktualisieren, erfüllen, kontrollieren, digital speichern und für alle jederzeit verfügbar halten. Die Verantwortlichen können digital abfragen, wer, welche Pflicht, an welchem Betriebsteil, wie zu erfüllen hat. Führungskräfte können auf einer Oberaufsichtsmaske mit einem Blick kontrollieren, ob alle Pflichten im Unternehmen erfüllt sind. Systematisch senken wir den Complianceaufwand durch Standardisierung um 60 %. Sachverhalte im Unternehmen wiederholen sich, verursachen gleiche Risiken und lösen gleiche Rechtspflichten zur Risikoabwehr aus. Rechtspflichten werden nur einmal geprüft, verlinkt, gespeichert und immer wieder mehrfach genutzt. Wir sind Rechtsanwälte mit eigenen Informatikern und bieten eine Softwarelösung mit Inhalten und präventiver Rechtsberatung aus einer Hand. Auf Anregungen aus den Unternehmen passen unsere EDV-Spezialisten die Software unseres Compliance-Management-Systems an. Der aktuelle Inhalt unserer Datenbank: 18.000 Rechtsvorschriften von EU, Bund, Ländern und Berufsgenossenschaften, 7.500 Gerichtsurteile, standardisierte Pflichtenkataloge für 45 Branchen und 57.000 vorformulierte Betriebspflichten. 44.000 Unternehmensrisiken sind mit 59.000 Rechtspflichten drei Millionen Mal verlinkt und gespeichert. Auf die Inhalte kommt es an. Je umfangreicher die Datenbank umso geringer ist das Risiko eine Unternehmenspflicht zu übersehen.

Weitere Informationen unter: www.rack-rechtsanwälte.de

Kesseln entstehen, besteht in der Anwendung einer der folgenden Techniken oder einer Kombination der folgenden Techniken.

	Technik	Beschreibung	Anwendbarkeit
a.	NO _X -arme Brenner	Siehe die Beschreibung in Abschnitt	Allgemein anwendbar
	(LNB)	8.3.	
		Speziell konstruierte, in mehreren,	
		nach Brennstoffart getrennten Rei-	
		hen angeordnete oder mit anderen	
		besonderen Vorrichtungen für die	
		Mehrstofffeuerung ausgestattete	
		NO _x -arme Brenner (z.B. mehrere,	
		für die Verbrennung unterschiedli-	
		cher Brennstoffe bestimmte Düsen	
		oder Vormischung der Brennstoffe)	
b.	Luftstufung	Siehe die Beschreibungen in Ab-	
C.	Brennstoffstufung	schnitt 8.3	
d.	Abgasrückführung		
e.	Managementsystem	Siehe die Beschreibung in Abschnitt	Allgemein anwendbar innerhalb der
	für Prozessgase	8.2.	Grenzen, die durch die Verfügbarkeit
			verschiedener Brennstoffarten ge-
			setzt werden
f.	Modernes	Siehe die Beschreibung in Abschnitt	Die Anwendbarkeit auf alte Feue-
	Steuerungssystem	8.3.	rungsanlagen kann durch die Not-
		Diese Technik wird in Kombination	wendigkeit der Umrüstung des Feue-
		mit anderen Techniken eingesetzt	rungssystems und/oder des Steue-
			rungs- und Regelungssystems ein-
			geschränkt sein
g.	Selektive nichtkata-	Siehe die Beschreibungen in Ab-	Nicht anwendbar auf Feuerungsan-
	lytische Reduktion	schnitt 8.3	lagen mit < 500 Betriebsstunden pro
	(SNCR)		Jahr

	Technik	Beschreibung	Anwendbarkeit
h.	Selektive katalyti-		Nicht anwendbar auf Feuerungsan-
	sche Reduktion		lagen mit < 500 Betriebsstunden pro
	(SCR)		Jahr.
			Ist auf Feuerungsanlagen mit < 100
			MW _{th} . nicht allgemein anwendbar.
			Die Umrüstung bestehender Feue-
			rungsanlagen unterliegt den Be-
			schränkungen, die durch den vor-
			handenen Platz und die Konfigurati-
			on der Feuerungsanlage gesetzt
			werden

BVT 48 Die BVT zur Vermeidung oder Verringerung von NO_X-Emissionen in die Luft, die bei der Verbrennung von Prozessgasen aus der Eisen- und Stahlherstellung in GuD entstehen, besteht in der Anwendung einer der folgenden Techniken oder einer Kombination der folgenden Techniken.

	Technik	Beschreibung	Anwendbarkeit
a.	Managementsystem	Siehe die Beschreibung in Abschnitt	Allgemein anwendbar innerhalb der
	für Prozessgase	8.2	Grenzen, die durch die Verfügbarkeit
			verschiedener Brennstoffarten ge-
			setzt werden
b.	Modernes Steue-	Siehe die Beschreibung in Abschnitt	Die Anwendbarkeit auf alte Feue-
	rungssystem	8.3.	rungsanlagen kann durch die Not-
		Diese Technik wird in Kombination	wendigkeit der Umrüstung des Feue-
		mit anderen Techniken eingesetzt	rungssystems und/oder des Steue-
			rungs- und Regelungssystems ein-
			geschränkt sein
c.	Hinzufügen von	Siehe die Beschreibung in Abschnitt	Die Anwendbarkeit kann Einschrän-
	Wasser/Dampf	8.3.	kungen im Zusammenhang mit der
		In Zweikraftstoff-Turbinen, in denen	Verfügbarkeit von Wasser unterlie-
		für die Verbrennung von Prozessga-	gen
		sen aus der Eisen- und Stahlherstel-	
		lung DLN eingesetzt werden, wird	
		bei der Verbrennung von Erdgas im	
		Allgemeinen Wasser/Dampf hinzu-	
		gesetzt	

	Technik	Beschreibung	Anwendbarkeit
d.	NO _X -arme Trocken-	Siehe die Beschreibung in Abschnitt	Anwendbar innerhalb der Grenzen,
	brenner (DLN)	8.3.	die durch die Reaktivität von Pro-
		NO _x -arme Trockenbrenner, die Pro-	zessgasen aus der Eisen- und
		zessgase aus der Eisen- und Stah-	Stahlherstellung, beispielsweise
		lerstellung verbrennen, unterschei-	Kokereigas, gesetzt werden.
		den sich von Brennern, die nur Erd-	Bei Turbinen, für die kein Umrüstsatz
		gas verbrennen	verfügbar ist, oder in Fällen, in denen
			Systeme zum Hinzufügen von Was-
			ser/Dampf installiert sind, kann die
			Anwendbarkeit eingeschränkt sein
e.	NO _X -arme Brenner	Siehe die Beschreibung in Abschnitt	Nur anwendbar auf die Zusatzbefeu-
	(LNB)	8.3	erung für Abhitzedampferzeuger
			(HRSG) bei Kombikraftwerken (GuD-
			Anlagen)
f.	Selektive katalyti-		Die Umrüstung bestehender Feue-
	sche Reduktion		rungsanlagen unterliegt den Be-
	(SCR)		schränkungen, die durch den vor-
			handenen Platz gesetzt werden

BVT 49 Die BVT zur Vermeidung oder Verringerung von CO-Emissionen in die Luft, die bei der Verbrennung von Prozessgasen aus der Eisen- und Stahlherstellung entstehen, besteht in der Anwendung einer der folgenden Techniken oder einer Kombination der folgenden Techniken.

	Technik	Beschreibung	Anwendbarkeit
a.	Optimierung der Verbrennung	Siehe die Beschreibungen in Abschnitt 8.3	Allgemein anwendbar
b.	Oxidationskatalysa- toren		Nur auf GuD anwendbar. Die Anwendbarkeit kann durch Platzmangel, Lastanforderungen und den Schwefelgehalt des Brennstoffs eingeschränkt sein

Tabelle 29 - BVT-assoziierte Emissionswerte für NO_X -Emissionen in die Luft, die bei der Verbrennung von 100 % Prozessgasen aus der Eisen- und Stahlherstellung entstehen

	O ₂ -	BVT-assoziierte Emissionswerte (mg/Nm³) (³)	
Art der Feuerungsanlage	Referenz-		Tagesmittelwert oder Mit-
	wert (in	Jahresmittelwert	telwert über den Zeitraum
	Vol %)		der Probennahme
Neuer Kessel	3	15-65	22-100

	O ₂ -	BVT-assoziierte Emissionswerte (mg/Nm³) (³)	
Art der Feuerungsanlage	Referenz- wert (in	Jahresmittelwert	Tagesmittelwert oder Mit- telwert über den Zeitraum
	Vol %)		der Probennahme
Bestehender Kessel	3	20-100 (²) (³)	22-110 (²) (⁴) (⁵)
Neue GuD	15	20-35	30-50
Bestehende GuD	15	20-50 (²) (³)	30-55 (⁵) (⁶)

- (1) Bei Anlagen, in denen ein Gasgemisch mit einem äquivalenten LHV von > 20 MJ/Nm³ verbrannt wird, wird von Emissionen am oberen Ende der BVT-assoziierten Emissionswertebereichen ausgegangen.
- (²) Das untere Ende des BVT-assoziierten Emissionswertebereichs lässt sich beim Einsatz der SCR erreichen.
- (3) Diese BVT-assoziierten Emissionswerte gelten nicht für Anlagen mit < 1 500 Betriebsstunden pro Jahr.
- (4) Bei Anlagen, die vor dem 7. Januar 2014 in Betrieb genommen wurden, liegt das obere Ende des Wertebereichs der BVT- assoziierten Emissionswerte bei 160 mg/Nm³. Darüber hinaus kann das obere Ende des Wertebereichs der BVT-assoziierten Emissionswerte überschritten werden, wenn keine SCR eingesetzt werden kann, wenn mit einem höheren Anteil an COG (z.B. > 50 %) gearbeitet wird und/oder wenn COG mit einem relativ hohen Niveau an H₂.verbrannt wird. In diesem Fall liegt das obere Ende des Wertebereichs der BVT-assoziierten Emissionswerte bei 220 mg/Nm³.
- (5) Bei Anlagen mit < 500 Betriebsstunden pro Jahr sind diese Werte indikativ.
- (6) Bei Anlagen, die vor dem 7. Januar 2014 in Betrieb genommen wurden, liegt das obere Ende des Wertebereichs der BVT- assoziierten Emissionswerte bei 70 mg/Nm³.

Die indikativen Jahresmittelwerte der CO-Emissionen lauten:

- < 5-100 mg/Nm³ bei bestehenden Kesseln mit ≥ 1 500 Betriebsstunden pro Jahr;
- < 5-35 mg/Nm³ bei neuen Kesseln;</p>
- < 5-20 mg/Nm³ bei bestehenden GuD mit ≥ 1 500 Betriebsstunden pro Jahr oder neuen GuD.</p>

4.2.3. SO_X-Emissionen in die Luft

BVT 50 Die BVT zur Vermeidung oder Verringerung von SO_X-Emissionen in die Luft, die bei der Verbrennung von Prozessgasen aus der Eisen- und Stahlherstellung entstehen, besteht in der Anwendung einer der folgenden Techniken oder einer Kombination der folgenden Techniken.

	Technik	Beschreibung	Anwendbarkeit
a.	Managementsystem	Siehe die Beschreibung in Abschnitt 8.2.	Allgemein anwendbar inner-
	für Prozessgase und	In dem durch das Eisen- und Stahlwerk er-	halb der Grenzen, die durch
	Wahl des Zusatz-	möglichten Umfang den Einsatz folgender	die Verfügbarkeit verschiede-
	brennstoffs	Brennstoffe maximieren:	ner Brennstoffarten gesetzt
		- einem überwiegenden Anteil von Hoch-	werden
		ofengas mit einem niedrigen Schwefel-	
		gehalt in der Brennstoffzufuhr;	
		- eine Kombination aus Brennstoffen mit	
		einem niedrigen gemittelten Schwefel-	
		gehalt, z.B. einzelne Prozessgase mit	
		einem sehr niedrigen S-Gehalt, wie:	
		- Hochofengas mit einem Schwefel-	
		gehalt < 10 mg/Nm³;	
		- Kokereigas mit einem Schwefelgeh-	
		alt < 300 mg/Nm³;	
		- und Zusatzbrennstoffe wie:	
		- Erdgas	
		- Flüssigbrennstoffe mit einem Schwe-	
		felgehalt ≤ 0,4 % (in Kesseln).	
		Einsatz einer begrenzten Menge an Brenn-	
		stoffen mit höherem Schwefelgehalt	
b.	Vorbehandlung des	Einsatz einer der folgenden Techniken:	Nur auf mit Kokereigas betrie-
	Kokereigases im	- Entschwefelung mittels Absorptionssys-	bene Feuerungsanlagen an-
	Eisen- und Stahl-	temen;	wendbar
	werk	- oxidative Nassentschwefelung	

SOFTWARE MIT INHALTEN AUS EINER HAND!

Die rechtliche Vorsorgeuntersuchung für Unternehmen.

Nutzen Sie unsere gespeicherten Erfahrungen aus 26 Jahren Complianceberatung. Wir vermeiden die Haftung für Organisationsverschulden von Führungskräften. Sie müssen organisatorisch dafür sorgen, dass sie sich selbst und dass sich alle Mitarbeiter des Unternehmens legal verhalten. Dazu lassen sich alle Risiken und Pflichten eines Unternehmens mit unserem System ermitteln, delegieren, monatlich aktualisieren, erfüllen, kontrollieren, digital speichern und für alle jederzeit verfügbar halten. Die Verantwortlichen können digital abfragen, wer, welche Pflicht, an welchem Betriebsteil, wie zu erfüllen hat. Führungskräfte können auf einer Oberaufsichtsmaske mit einem Blick kontrollieren, ob alle Pflichten im Unternehmen erfüllt sind. Systematisch senken wir den Complianceaufwand durch Standardisierung um 60 %. Sachverhalte im Unternehmen wiederholen sich, verursachen gleiche Risiken und lösen gleiche Rechtspflichten zur Risikoabwehr aus. Rechtspflichten werden nur einmal geprüft, verlinkt, gespeichert und immer wieder mehrfach genutzt. Wir sind Rechtsanwälte mit eigenen Informatikern und bieten eine Softwarelösung mit Inhalten und präventiver Rechtsberatung aus einer Hand. Auf Anregungen aus den Unternehmen passen unsere EDV-Spezialisten die Software unseres Compliance-Management-Systems an. Der aktuelle Inhalt unserer Datenbank: 18.000 Rechtsvorschriften von EU, Bund, Ländern und Berufsgenossenschaften, 7.500 Gerichtsurteile, standardisierte Pflichtenkataloge für 45 Branchen und 57.000 vorformulierte Betriebspflichten. 44.000 Unternehmensrisiken sind mit 59.000 Rechtspflichten drei Millionen Mal verlinkt und gespeichert. Auf die Inhalte kommt es an. Je umfangreicher die Datenbank umso geringer ist das Risiko eine Unternehmenspflicht zu übersehen.

Weitere Informationen unter: www.rack-rechtsanwälte.de

Tabelle 30 - BVT-assoziierte Emissionswerte für SO₂-Emissionen in die Luft, die bei der Verbrennung von 100 % Prozessgasen aus der Eisen- und Stahlherstellung entstehen

	O ₂ -	BVT-assoziierte Emissionswerte für SO ₂ (mg/Nm ³)	
Art der Feuerungsanlage	Referenz- wert (in Vol %)	Jahresmittelwert (¹)	Tagesmittelwert oder Mit- telwert über den Zeitraum der Probennahme (²)
Neuer oder bestehender Kessel	3	25-150	50-200 (³)
Neue oder bestehende GuD	15	10-45	20-70

⁽¹⁾ Diese BVT-assoziierten Emissionswerte gelten nicht für bestehende Anlagen mit < 1 500 Betriebsstunden pro Jahr.

- (2) Bei bestehenden Anlagen mit < 500 Betriebsstunden pro Jahr sind diese Werte indikativ.
- (3) Das obere Ende des Wertebereichs der BVT-assoziierten Emissionswerte kann überschritten werden, wenn mit einem höheren Anteil an COG (z.B. > 50 %) gearbeitet wird. In diesem Fall liegt das obere Ende des BVT-assoziierten Emissionswertebereichs bei 300 mg/Nm³.

4.2.4. Staubemissionen in die Luft

BVT 51 Die BVT zur Verringerung von Staubemissionen in die Luft, die bei der Verbrennung von Prozessgasen aus der Eisen- und Stahlherstellung entstehen, besteht in der Anwendung einer der folgenden Techniken oder einer Kombination der folgenden Techniken.

	Technik	Beschreibung	Anwendbarkeit
a.	Brennstoffauswahl/-	Verwendung einer Kombination von	Allgemein anwendbar innerhalb der
	management	Prozessgasen und Zusatzbrennstof-	Grenzen, die durch die Verfügbarkeit
		fen mit einem niedrigen gemittelten	verschiedener Brennstoffarten ge-
		Staub- oder Aschegehalt	setzt werden
b.	Vorbehandlung des	Anwendung eines Trockenentstau-	Nur anwendbar, wenn Hochofengas
	Hochofengases im	bungsgerätes oder einer Kombinati-	verbrannt wird
	Eisen- und Stahl-	on solcher Geräte (z.B. Leitbleche,	
	werk	Staubfänger, Zyklone, elektrostati-	
		sche Abscheider) und/oder einer	
		anschließenden Entstaubung (Ven-	
		turiwäscher, Hordenwäscher,	
		Ringspaltwäscher, Nasselektrofilter,	
		Desintegratoren)	

	Technik	Beschreibung	Anwendbarkeit
C.	Vorbehandlung des	Einsatz trockener (z.B. ESP oder	Nur anwendbar, wenn Konvertergas
	Konvertergases im	Gewebefilter) oder nasser (z.B.	verbrannt wird
	Eisen- und Stahl-	Nass-ESP oder Nasswäscher) Ent-	
	werk	staubung. Weitere Beschreibungen	
		sind dem Referenzdokument für die	
		besten verfügbaren Technologien	
		(BREF) für Eisen und Stahl zu ent-	
		nehmen	
d.	Elektrostatischer	Siehe die Beschreibungen in Ab-	Nur bei Feuerungsanlagen anwend-
	Abscheider (ESP)	schnitt 8.5	bar, die einen bedeutenden Anteil an
e.	Gewebefilter		Zusatzbrennstoffen mit einem hohen
			Aschegehalt verbrennen

Tabelle 31 - BVT-assoziierte Emissionswerte für Staubemissionen in die Luft, die bei der Verbrennung von 100 % Prozessgasen aus der Eisen- und Stahlherstellung entstehen

	BVT-assoziierte Emissionswerte für Staub (mg/Nm³)		
Art der Feuerungsanlage	Jahresmittelwert (¹)	Tagesmittelwert oder Mittelwert über den Zeitraum der Proben- nahme (²)	
Neuer oder bestehender Kessel	2-7	2-10	
Neue oder bestehende GuD	2-5	2-5	

⁽¹⁾ Diese BVT-assoziierten Emissionswerte gelten nicht für bestehende Anlagen mit < 1 500 Betriebsstunden pro Jahr.

4.3. BVT-Schlussfolgerungen für die Verbrennung gasförmiger und/oder flüssiger Brennstoffe auf Offshore-Bohrinseln

Wenn nicht anders angegeben, sind die in diesem Abschnitt dargestellten BVT-Schlussfolgerungen allgemein auf die Verbrennung gasförmiger und/oder flüssiger Brennstoffe auf Offshore-Bohrinseln anwendbar. Sie gelten zusätzlich zu den in Abschnitt 1 aufgeführten allgemeinen BVT-Schlussfolgerungen.

BVT 52 Die BVT zur Verbesserung der allgemeinen Umweltleistung der Verbrennung gasförmiger und/oder flüssiger Brennstoffe auf Offshore-Bohrinseln besteht in der Anwendung einer der folgenden Techniken oder einer Kombination der folgenden Techniken.

⁽²⁾ Bei bestehenden Anlagen mit < 500 Betriebsstunden pro Jahr sind diese Werte indikativ.

	Techniken	Beschreibung	Anwendbarkeit
a.	Prozessoptimierung	Prozess optimieren, um die mecha-	Allgemein anwendbar
		nischen Leistungsanforderungen zu	
		minimieren	
b.	Steuerdruckverluste	Ein- und Ausgangssysteme optimie-	
		ren und auf einem Stand erhalten, in	
		dem Druckverluste so gering wie	
		möglich gehalten werden	
C.	Laststeuerung	Aus mehreren Generatoren oder	
		Kompressoren bestehende Systeme	
		auf Belastungspunkten betreiben, an	
		denen Emissionen auf ein Minimum	
		beschränkt werden	
d.	"Rotierende Reser-	Wenn aus Gründen der Betriebssi-	
	ve" auf ein Minimum	cherheit mit einer rotierenden Re-	
	beschränken	serve gearbeitet wird, wird die An-	
		zahl der zusätzlichen Turbinen auf	
		ein Minimum beschränkt, sofern	
		keine außergewöhnlichen Umstände	
		herrschen	
e.	Brennstoffwahl	Eine Gasversorgung von einer Stelle	
		im Topside-Öl- und -	
		Gasversorgungsprozess vorsehen,	
		an der eine gewisse Mindestband-	
		breite an Gasverbrennungsparame-	
		tern wie z.B. Brennwert, Mindest-	
		konzentrationen am schwefel-	
		haltigen Verbindungen geboten wird,	
		um die Bildung von SO ₂ auf ein Mini-	
		mum zu beschränken. Bei flüssigen	
		Destillatbrennstoffen werden Brenn-	
		stoffe mit niedrigem Schwefelgehalt	
		bevorzugt	
f.	Einspritzungstiming	Das Einspritzungstiming bei Motoren	
		optimieren	

	Techniken	Beschreibung	Anwendbarkeit
g.	Wärmerückgewin-	Nutzung der Wärme des Abgases	Allgemein anwendbar auf neue Feu-
	nung	der Turbinen/Motoren zur Heizung	erungsanlagen.
		der Plattform	Bei bestehenden Feuerungsanlagen
			kann die Anwendbarkeit aufgrund
			des Wärmebedarfs und des Grund-
			risses der Feuerungsanlage (Platz)
			eingeschränkt sein
h.	Leistungsintegration	Nutzung einer zentralen Stromquelle	Die Anwendbarkeit kann abhängig
	mehrerer Gas-	zur Versorgung einer Reihe teilneh-	vom Standort der verschiedenen
	/Ölfelder	mender Plattformen, die sich an ver-	Gas-/Ölfelder und der Organisation
		schiedenen Gas-/Ölfeldern befinden	der verschiedenen teilnehmenden
			Plattformen, u. a. der Abstimmung
			der verschiedenen Planungstermi-
			nierungen sowie der Aufnahme und
			Einstellung der Produktion, einge-
			schränkt sein

BVT 53 Die BVT zur Vermeidung oder Verringerung von NO_X-Emissionen in die Luft, die bei der Verbrennung gasförmiger und/oder flüssiger Brennstoffe auf Offshore-Bohrinseln entstehen, besteht in der Anwendung einer der folgenden Techniken oder einer Kombination der folgenden Techniken.

Technik	Beschreibung	Anwendbarkeit
Modernes Steue-	Siehe die Beschreibungen in Ab-	Die Anwendbarkeit auf alte Feue-
rungssystem	schnitt 8.3	rungsanlagen kann durch die Not-
		wendigkeit der Umrüstung des Feue-
		rungssystems und/oder des Steue-
		rungs- und Regelungssystems ein-
		geschränkt sein
NO _X -arme Trocken-		Anwendbar auf neue Gasturbinen
brenner (DLN)		(Standardausstattung) innerhalb der
		Grenzen, die durch Schwankungen
		in der Brennstoffqualität gesetzt wer-
		den.
		Bei bestehenden Gasturbinen kann
		die Anwendbarkeit aufgrund der
		Verfügbarkeit von Umrüstpaketen
		(für den Schwachlastbetrieb), der
		Komplexität der Organisation der
		Bohrinsel und des verfügbaren Plat-
		zes eingeschränkt sein
Magermixkonzept		Nur auf neue gasbefeuerte Motoren
		anwendbar
NO _X -arme Brenner		Nur auf Kessel anwendbar
(LNB)		
	Modernes Steuerungssystem NO _X -arme Trockenbrenner (DLN) Magermixkonzept NO _X -arme Brenner	Modernes Steuerungssystem Siehe die Beschreibungen in Abschnitt 8.3 NO _X -arme Trockenbrenner (DLN) Magermixkonzept NO _X -arme Brenner

BVT 54 Die BVT zur Vermeidung oder Verringerung von CO-Emissionen in die Luft, die bei der Verbrennung gasförmiger und/oder flüssiger Brennstoffe in Gasturbinen auf Offshore-Bohrinseln entstehen, besteht in der Anwendung einer der folgenden Techniken oder einer Kombination der folgenden Techniken.

	Technik	Beschreibung	Anwendbarkeit
a.	Optimierung der	Siehe die Beschreibungen in Ab-	Allgemein anwendbar
	Verbrennung	schnitt 8.3	
b.	Oxidationskatalysa-		Nicht auf Feuerungsanlagen mit <
	toren		500 Betriebsstunden pro Jahr an-
			wendbar.
			Die Umrüstung bestehender Feue-
			rungsanlagen unterliegt den Be-
			schränkungen, die durch den vor-
			handenen Platz und Gewichtsein-
			schränkungen gesetzt werden

SOFTWARE MIT INHALTEN AUS EINER HAND!

Die rechtliche Vorsorgeuntersuchung für Unternehmen.

Nutzen Sie unsere gespeicherten Erfahrungen aus 26 Jahren Complianceberatung. Wir vermeiden die Haftung für Organisationsverschulden von Führungskräften. Sie müssen organisatorisch dafür sorgen, dass sie sich selbst und dass sich alle Mitarbeiter des Unternehmens legal verhalten. Dazu lassen sich alle Risiken und Pflichten eines Unternehmens mit unserem System ermitteln, delegieren, monatlich aktualisieren, erfüllen, kontrollieren, digital speichern und für alle jederzeit verfügbar halten. Die Verantwortlichen können digital abfragen, wer, welche Pflicht, an welchem Betriebsteil, wie zu erfüllen hat. Führungskräfte können auf einer Oberaufsichtsmaske mit einem Blick kontrollieren, ob alle Pflichten im Unternehmen erfüllt sind. Systematisch senken wir den Complianceaufwand durch Standardisierung um 60 %. Sachverhalte im Unternehmen wiederholen sich, verursachen gleiche Risiken und lösen gleiche Rechtspflichten zur Risikoabwehr aus. Rechtspflichten werden nur einmal geprüft, verlinkt, gespeichert und immer wieder mehrfach genutzt. Wir sind Rechtsanwälte mit eigenen Informatikern und bieten eine Softwarelösung mit Inhalten und präventiver Rechtsberatung aus einer Hand. Auf Anregungen aus den Unternehmen passen unsere EDV-Spezialisten die Software unseres Compliance-Management-Systems an. Der aktuelle Inhalt unserer Datenbank: 18.000 Rechtsvorschriften von EU, Bund, Ländern und Berufsgenossenschaften, 7.500 Gerichtsurteile, standardisierte Pflichtenkataloge für 45 Branchen und 57.000 vorformulierte Betriebspflichten. 44.000 Unternehmensrisiken sind mit 59.000 Rechtspflichten drei Millionen Mal verlinkt und gespeichert. Auf die Inhalte kommt es an. Je umfangreicher die Datenbank umso geringer ist das Risiko eine Unternehmenspflicht zu übersehen.

Weitere Informationen unter: www.rack-rechtsanwälte.de

Tabelle 32 - BVT-assoziierte Emissionswerte für NO_X-Emissionen in die Luft, die bei der Verbrennung gasförmiger und/oder flüssiger Brennstoffe in Gasturbinen mit offenem Kreislauf auf Offshore-Bohrinseln entstehen

Art der Feuerungsanlage	BVT-assoziierte Emissi- onswerte (mg/Nm³) P) Mittelwert über den Zeit- raum der Probenahme
Neue Gasturbine, die mit gasförmigen Brennstoffen befeuert wird (²)	15-50 (³)
Bestehende Gasturbine, die mit gasförmigen Brennstoffen befeuert wird (²)	< 50-350 (⁴)

- (1) Diese BVT-assoziierten Emissionswerte basieren auf einer am Tag verfügbaren > 70 % Grundlastleistung.
- (2) Schließt Ein- und Zweikraftstoff-Gasturbinen ein.
- (3) Das obere Ende der Bandbreite der BVT-assoziierten Emissionswerte liegt bei 250 mg/Nm3. wenn keine DLN-Brenner angewendet werden können.
- (4) Das untere Ende der Bandbreite der BVT-assoziierten Emissionswerte ist mit DLN-Brennern erreichbar.

Die indikativen mittleren CO-Emissionswerte über den Probenahmezeitraum lauten wie folgt:

- < 100 mg/Nm³ bei bestehenden, mit gasförmigen Brennstoffen betriebenen Gasturbinen auf Offshore-Bohrinseln und ≥ 1 500 Betriebsstunden pro Jahr;
- < 75 mg/Nm³ bei neuen, mit gasförmigen Brennstoffen betriebenen Gasturbinen auf Offshore-Bohrinseln.

5. BVT-Schlussfolgerungen für Anlagen mit Mehrstofffeuerung

5.1. BVT-Schlussfolgerungen für die Verbrennung von Prozessbrennstoffen aus der chemischen Industrie

Wenn nicht anders angegeben, sind die in diesem Abschnitt dargestellten BVT-Schlussfolgerungen allgemein auf die einzeln, kombiniert oder gleichzeitig mit anderen gasförmigen und/oder flüssigen Brennstoffen erfolgende Verbrennung von Prozessbrennstoffen aus der chemischen Industrie anwendbar. Sie gelten zusätzlich zu den in Abschnitt 1 aufgeführten allgemeinen BVT-Schlussfolgerungen.

5.1.1. Allgemeine Umweltleistung

BVT 55 Die BVT zur Verbesserung der allgemeinen Umweltleistung der Verbrennung von Brennstoffen aus Produktionsrückständen aus der chemischen Industrie in Kes-

seln besteht in der Anwendung einer geeigneten Kombination der in der BVT 6 und im Folgenden aufgeführten Techniken.

	Technik	Beschreibung	Anwendbarkeit
a.	Vorbehandlung von	Zur Verbesserung der Umweltleis-	Innerhalb der Grenzen anwendbar,
	Brennstoffen aus	tung der Brennstoffverbrennung eine	die durch die Merkmale des Brenn-
	Produktionsrück-	Brennstoffvorbehandlung inner-	stoffs und den verfügbaren Raum
	ständen aus der	halb/außerhalb des Standorts der	gesetzt werden
	chemischen Indust-	Feuerungsanlage durchführen	
	rie		

5.1.2. Energieeffizienz

Tabelle 33 - BVT-assoziierte Energieeffizienzwerte für die Verbrennung von Brennstoffen aus Produktionsrückständen aus der chemischen Industrie in Kesseln

	BVT-assoziierte Energieeffizienzwerte (¹) (²)				
Art der Verbrennungseinheit		er Nettowir- ad (in %)	Gesamter Nettobrenn- stoffnutzungsgrad (in %) (³) (⁴)		
	Nous Anlaga	Bestehende	Nove Anlege	Bestehende	
	Neue Anlage	Anlage	Neue Anlage	Anlage	
Flüssige Brennstoffe aus der chemischen	> 36,4	35,6-37,4	80-96	80-96	
Industrie nutzende Kessel, auch bei Mi-					
schung mit HFO, Gasöl und/oder anderen					
flüssigen Brennstoffen					
Gasförmige Brennstoffe aus der chemi-	39-42,5	38-40	78-95	78-95	
schen Industrie nutzende Kessel, auch bei					
Mischung mit Erdgas und/oder anderen					
gasförmigen Brennstoffen					

- (1) Diese BVT-assoziierten Energieeffizienzwerte gelten nicht für Anlagen mit < 1 500 Betriebsstunden pro Jahr.
- (2) Bei KWK-Anlagen gilt je nach der Konstruktionsweise der KWK-Anlage (d.h. eher auf Stromerzeugung oder eher auf Wärmeerzeugung ausgerichtet) nur einer der beiden BVT-assoziierten Energieeffizienzwerte "Elektrischer Nettowirkungsgrad" oder "Gesamter Nettobrennstoffnutzungsgrad".
- (³) Diese BVT-assoziierten Energieeffizienzwerte sind möglicherweise nicht erreichbar, wenn der potenzielle Wärmebedarf zu niedrig ist.
- (4) Diese BVT-assoziierten Energieeffizienzwerte gelten nicht für Anlagen, in denen nur Strom erzeugt wird.

5.1.3. NO_X- und CO-Emissionen in die Luft

BVT 56 Die BVT zur Vermeidung oder Verringerung von NO_X-Emissionen in die Luft

bei gleichzeitiger Begrenzung der CO-Emissionen in die Luft, die bei der Verbrennung von Brennstoffen aus Produktionsrückständen aus der chemischen Industrie entstehen, besteht in der Anwendung einer der folgenden Techniken oder einer Kombination der folgenden Techniken.

Technik		Beschreibung	Anwendbarkeit
a.	NO _X -arme Brenner	Siehe die Beschreibungen in	Allgemein anwendbar
	(LNB)	Abschnitt 8.3	
b.	Luftstufung		
c.	Brennstoffstufung	Siehe die Beschreibung in	
		Abschnitt 8.3.	
		Die Anwendung der Brenn-	
		stoffstufung beim Einsatz von	
		Flüssigbrennstoffgemischen	
		erfordert möglicherweise eine	
		spezielle Auslegung des	
		Brenners	
d.	Abgasrückführung	Siehe die Beschreibungen in	Allgemein anwendbar auf neue Feuerungs-
		Abschnitt 8.3	anlagen.
			Auf bestehende Feuerungsanlagen inner-
			halb der durch die Sicherheit chemischer
			Anlagen gesetzten Grenzen anwendbar
e.	Hinzufügen von		Die Anwendbarkeit kann Einschränkungen
	Wasser/Dampf		im Zusammenhang mit der Verfügbarkeit
			von Wasser unterliegen
f.	Brennstoffwahl		Innerhalb der Grenzen anwendbar, die
			durch die Verfügbarkeit unterschiedlicher
			Kraftstoffarten und/oder eine alternative
			Nutzung des Prozessbrennstoffs gesetzt
			werden
g.	Modernes Steuer-		Die Anwendbarkeit auf alte Feuerungsanla-
	ungssystem		gen kann durch die Notwendigkeit der Um-
			rüstung des Feuerungssystems und/oder
			des Steuerungs- und Regelungssystems
			eingeschränkt sein

	Technik	Beschreibung	Anwendbarkeit
h.	Selektive nichtkata-		Auf bestehende Feuerungsanlagen inner-
	lytische Reduktion		halb der durch die Sicherheit chemischer
	(SNCR)		Anlagen gesetzten Grenzen anwendbar.
			Nicht auf Feuerungsanlagen mit < 500 Be-
			triebsstunden pro Jahr anwendbar.
			Die Anwendbarkeit kann bei Feuerungsan-
			lagen, die zwischen 500 und 1 500 Be-
			triebsstunden pro Jahr haben und sich
			durch häufige Brennstoffwechsel und häufi-
			ge Lastschwankungen auszeichnen, einge-
			schränkt sein
i.	Selektive katalyti-		Auf bestehende Feuerungsanlagen inner-
	sche Reduktion		halb der durch die Konfiguration der Kanäle,
	(SCR)		den verfügbaren Platz und die Sicherheit
			chemischer Anlagen gesetzten Grenzen
			anwendbar.
			Nicht auf Feuerungsanlagen mit < 500 Be-
			triebsstunden pro Jahr anwendbar.
			Hinsichtlich der Umrüstung bestehender
			Feuerungsanlagen mit 500 bis 1 500 Be-
			triebsstunden pro Jahr können technische
			und wirtschaftliche Einschränkungen beste-
			hen.
			Ist auf Feuerungsanlagen mit < 100 MW _{th} .
			nicht allgemein anwendbar

Tabelle 34 - BVT-assoziierte Emissionswerte für NO_X-Emissionen in die Luft, die bei der in Kesseln erfolgenden Verbrennung von 100 % Brennstoffen aus Produktionsrückständen aus der chemischen Industrie entstehen

	BVT-assoziierte Emissionswerte (mg/Nm³)			
In der Feuerungsanlage ge- nutzte Brennstoffe	Jahresmittelwert		Tagesmittelwert oder Mittel- wert über den Zeitraum der Probennahme	
	Neue Anlage	Bestehende Anlage (¹)	Neue Anlage	Bestehende Anlage (²)
Gemisch aus Gasen und Flüssigkeiten	30-85	80-290 (³)	50-110	100-330 (³)
Nur Gase	20-80	70-100 (⁴)	30-100	85-110 (⁵)
(¹) Diese BVT-assoziierten Emissionswerte gelten nicht für Anlagen mit < 1 500 Betriebsstunden pro				

	BVT-assoziierte Emissionswerte (mg/Nm³)			
In der Feuerungsanlage ge- nutzte Brennstoffe	Jahresmittelwert		Tagesmittelwert oder Mittel- wert über den Zeitraum der Probennahme	
	Neue Anlage	Bestehende Anlage (¹)	Neue Anlage	Bestehende Anlage (²)

Jahr.

- (²) Bei Anlagen mit < 500 Betriebsstunden pro Jahr sind diese indikativ.
- (³) Bei vor dem 27. November 2003 in Betrieb genommenen, bestehenden Anlagen mit ≤ 500 MW_{th}, in denen flüssige Brennstoffe mit einem Stickstoffgehalt über 0,6 Gew.-% verwendet werden, liegt das obere Ende des BVT-assoziierten Emissionswertebereichs bei 380 mg/Nm³.
- (4) Bei bestehenden Anlagen, die vor dem 7. Januar 2014 in Betrieb genommen wurden, liegt das obere Ende des BVT-assoziierten Emissionswertebereichs bei 180 mg/Nm³.
- (5) Bei bestehenden Anlagen, die vor dem 7. Januar 2014 in Betrieb genommen wurden, liegt das obere Ende des BVT-assoziierten Emissionswertebereichs bei 210 mg/Nm³.

Die indikativen Jahresmittelwerte der CO-Emissionen bei bestehenden Feuerungsanlagen mit ≥ 1 500 Betriebsstunden pro Jahr oder bei neuen Feuerungsanlagen entsprechen < 5-30 mg/Nm³.

5.1.4. SO_X-, HCI- und HF-Emissionen in die Luft

BVT 57 Die BVT zur Verringerung von SO_X-, HCl- und HF-Emissionen in die Luft, die bei der Verbrennung von Brennstoffen aus Produktionsrückständen aus der chemischen Industrie in Kesseln entstehen, besteht in der Anwendung einer der folgenden Techniken oder einer Kombination der folgenden Techniken.

	Technik	Beschreibung	Anwendbarkeit
a.	Brennstoffwahl	Siehe die Beschreibungen in Ab-	Innerhalb der Grenzen anwendbar,
		schnitt 8.4	die durch die Verfügbarkeit unter-
			schiedlicher Kraftstoffarten und/oder
			eine alternative Nutzung des Pro-
			zessbrennstoffs gesetzt werden
b.	Einspritzung von		Auf bestehende Feuerungsanlagen
	Sorptionsmittel in		innerhalb der durch die Konfiguration
	den Kessel (inner-		der Kanäle, den verfügbaren Platz
	halb des Ofens oder		und die Sicherheit chemischer Anla-
	Wirbelschichtbetts)		gen gesetzten Grenzen anwendbar.
C.	Kanaleinspritzung		Nass-REA und Meerwasser-REA
	des Sorptionsmittels		sind auf Feuerungsanlagen mit <
	(DSI)		500 Betriebsstunden pro Jahr nicht

SOFTWARE MIT INHALTEN AUS EINER HAND!

Die rechtliche Vorsorgeuntersuchung für Unternehmen.

Nutzen Sie unsere gespeicherten Erfahrungen aus 26 Jahren Complianceberatung. Wir vermeiden die Haftung für Organisationsverschulden von Führungskräften. Sie müssen organisatorisch dafür sorgen, dass sie sich selbst und dass sich alle Mitarbeiter des Unternehmens legal verhalten. Dazu lassen sich alle Risiken und Pflichten eines Unternehmens mit unserem System ermitteln, delegieren, monatlich aktualisieren, erfüllen, kontrollieren, digital speichern und für alle jederzeit verfügbar halten. Die Verantwortlichen können digital abfragen, wer, welche Pflicht, an welchem Betriebsteil, wie zu erfüllen hat. Führungskräfte können auf einer Oberaufsichtsmaske mit einem Blick kontrollieren, ob alle Pflichten im Unternehmen erfüllt sind. Systematisch senken wir den Complianceaufwand durch Standardisierung um 60 %. Sachverhalte im Unternehmen wiederholen sich, verursachen gleiche Risiken und lösen gleiche Rechtspflichten zur Risikoabwehr aus. Rechtspflichten werden nur einmal geprüft, verlinkt, gespeichert und immer wieder mehrfach genutzt. Wir sind Rechtsanwälte mit eigenen Informatikern und bieten eine Softwarelösung mit Inhalten und präventiver Rechtsberatung aus einer Hand. Auf Anregungen aus den Unternehmen passen unsere EDV-Spezialisten die Software unseres Compliance-Management-Systems an. Der aktuelle Inhalt unserer Datenbank: 18.000 Rechtsvorschriften von EU, Bund, Ländern und Berufsgenossenschaften, 7.500 Gerichtsurteile, standardisierte Pflichtenkataloge für 45 Branchen und 57.000 vorformulierte Betriebspflichten. 44.000 Unternehmensrisiken sind mit 59.000 Rechtspflichten drei Millionen Mal verlinkt und gespeichert. Auf die Inhalte kommt es an. Je umfangreicher die Datenbank umso geringer ist das Risiko eine Unternehmenspflicht zu übersehen.

Weitere Informationen unter: www.rack-rechtsanwälte.de

	Technik	Beschreibung	Anwendbarkeit
d.	Sprühabsorber im		anwendbar.
	Trockenverfahren		Hinsichtlich der Anwendung der
	(SDA)		Nass- REA oder Meerwasser-REA in
e.	Nasswäsche	Siehe die Beschreibung in Abschnitt	Feuerungsanlagen mit < 300 MW _{th} ,
		8.4.	oder der Umrüstung von Feuerungs-
		Die Nasswäsche wird zur Abschei-	anlagen, die zwischen 500 und 1 500
		dung von HCI und HF genutzt, wenn	Betriebsstunden pro Jahr erreichen,
		für die Verringerung von SO _x -	können technische und wirtschaftli-
		Emissionen keine Nass-REA einge-	che Einschränkungen bestehen
		setzt wird	
f.	Nass-	Siehe die Beschreibungen in Ab-	
	Rauchgasentschwe-	schnitt 8.4	
	felung (Nass-REA)		
g.	Meerwasser-REA		

Tabelle 35 - BVT-assoziierte Emissionswerte für SO₂-Emissionen in die Luft, die bei der in Kesseln erfolgenden Verbrennung von 100 % Brennstoffen aus Produktionsrückständen aus der chemischen Industrie entstehen

Art der Feuerungsanlage	BVT-assoziierte Emissionswerte (mg/Nm³)		
		Tagesmittelwert oder	
	Jahraansittahuant (1)	Mittelwert über den Zeit-	
	Jahresmittelwert (1)	raum der Probennahme	
		(²)	
Neue und bestehende Kessel	10-110	90-200	

⁽¹⁾ Diese BVT-assoziierten Emissionswerte gelten nicht für bestehende Anlagen mit < 1 500 Betriebsstunden pro Jahr.

Tabelle 36 - BVT-assoziierte Emissionswerte für HCI- und HF-Emissionen in die Luft, die bei der in Kesseln erfolgenden Verbrennung von Brennstoffen aus Produktionsrückständen aus der chemischen Industrie entstehen

	BVT-assoziierte Emissionswerte (mg/Nm³)			
Feuerungswärmeleistung der	HCI		HF	
Feuerungsanlage (MW _{th})	Mittelwert der in einem Jahr gewonnenen Proben			
· cacrangeanage (mr. a)	Neue Anlage	Bestehende Anlage (³)	Neue Anlage	Bestehende Anlage (³)
< 100	1-7	2-15 (²)	< 1-3	< 1-6 (³)
≥ 100	1-5	1-9 (²)	< 1-2	< 1-3 (³)
(1) Bei Anlagen mit < 500 Betriebsstunden pro Jahr sind diese Werte indikativ.				

⁽²⁾ Bei bestehenden Anlagen mit < 500 Betriebsstunden pro Jahr sind diese Werte indikativ.

	BVT-assoziierte Emissionswerte (mg/Nm³)			
Feuerungswärmeleistung der	HCI		HF	
Feuerungsanlage (MW _{th})	Mittelwert der in einem Jahr gewonnenen Proben			
	Neue Anlage	Bestehende Anlage (³)	Neue Anlage	Bestehende Anlage (³)

⁽²) Bei Anlagen mit < 1 500 Betriebsstunden pro Jahr entspricht das obere Ende des BVT-assoziierten Emissionswertebereichs 20 mg/Nm³.

5.1.5. Staub- und partikelgebundene Metallemissionen in die Luft

BVT 58 Die BVT zur Verringerung bei der Verbrennung von Brennstoffen aus Produktionsrückständen aus der chemischen Industrie in Kesseln entstehender Emissionen von Staub, partikelgebundenen Metallen sowie Spurenstoffen in die Luft besteht in der Anwendung einer der folgenden Techniken oder einer Kombination der folgenden Techniken.

	Technik	Beschreibung	Anwendbarkeit
a.	Elektrostatischer	Siehe die Beschreibungen in Ab-	Allgemein anwendbar
	Abscheider (ESP)	schnitt 8.5	
b.	Gewebefilter		
C.	Brennstoffwahl	Siehe die Beschreibung in Abschnitt	Innerhalb der Grenzen anwendbar,
		8.5.	die durch die Verfügbarkeit unter-
		Verwendung einer Kombination aus	schiedlicher Kraftstoffarten und/oder
		Prozessbrennstoffen aus der chemi-	eine alternative Nutzung des Pro-
		schen Industrie sowie Zusatzbrenn-	zessbrennstoffs gesetzt werden
		stoffen mit einem niedrigen gemittel-	
		ten Staub- oder Aschegehalt	
d.	Trockenes oder	Siehe die Beschreibungen in Ab-	Angaben zur Anwendbarkeit: siehe
	halbtrockenes REA-	schnitt 8.5.	BVT 57
	System	Diese Technik wird hauptsächlich für	
e.	Nass-	die Verminderung von SO _x , HCl	
	Rauchgasentschwe-	und/oder HF eingesetzt	
	felung (Nass-REA)		

⁽³) Bei Anlagen mit < 1 500 Betriebsstunden pro Jahr entspricht das obere Ende des BVT-assoziierten Emissionswertebereichs 7 mg/Nm³.

Tabelle 37 - BVT-assoziierte Emissionswerte für Staubemissionen in die Luft, die bei der in Kesseln erfolgenden Verbrennung von Gas- und Flüssigkeitsgemischen entstehen, die sich aus 100 % Brennstoffen aus Produktionsrückständen aus der chemischen Industrie zusammensetzen

	BVT-assoziierte Emissionswerte für Staub (mg/Nm³)			
Feuerungswärmeleistung der Feuerungsanlage (MW _{th})	Jahresmittelwert		Tagesmittelwert oder Mittel- wert über den Zeitraum der Probennahme	
	Neue Anlage	Bestehende Anlage (1)	Neue Anlage	Bestehende Anlage (²)
< 300	2-5	2-15	2-10	2-22 (³)
≥ 300	2-5	2-10 (⁴)	2-10	2-11 (³)

⁽¹⁾ Diese BVT-assoziierten Emissionswerte gelten nicht für Anlagen mit < 1 500 Betriebsstunden pro Jahr.

5.1.6. Emissionen flüchtiger organischer Verbindungen sowie polychlorierter Dibenzodioxine und -furane in die Luft

BVT 59 Die BVT zur Verringerung bei der Verbrennung von Brennstoffen aus Produktionsrückständen aus der chemischen Industrie in Kesseln entstehender Emissionen flüchtiger organischer Verbindungen sowie polychlorierter Dibenzodioxine und furane in die Luft besteht in der Anwendung einer der folgenden Techniken oder einer Kombination der folgenden bzw. in BVT 6 angegebenen Techniken.

⁽²⁾ Bei Anlagen mit < 500 Betriebsstunden pro Jahr sind diese Werte indikativ.

⁽³⁾ Bei Anlagen, die vor dem 7. Januar 2014 in Betrieb genommen wurden, entspricht das obere Ende des BVT-assoziierten Emissionswertebereichs 25 mg/Nm³.

⁽⁴⁾ Bei Anlagen, die vor dem 7. Januar 2014 in Betrieb genommen wurden, entspricht das obere Ende des BVT-assoziierten Emissionswertebereichs 15 mg/Nm³.

	Technik	Beschreibung	Anwendbarkeit
a.	Einspritzung von	Siehe die Beschreibung in Abschnitt	Nur auf Feuerungsanlagen anwend-
	Aktivkohle	8.5	bar, in denen Brennstoffe verwendet
b.	Schroffes Abschre-	Eine Beschreibung von Nasswä-	werden, die aus chemischen Pro-
	cken unter Einsatz	sche/Abgaskondensator ist Ab-	zessen mit Beteiligung chlorierter
	von Nasswä-	schnitt 8.4 zu entnehmen	Stoffe gewonnen wurden.
	sche/Abgaskondens		Hinweise zur Anwendbarkeit von
	ator		SCR und schroffem Abschrecken
c.	Selektive katalyti-	Siehe die Beschreibung in Abschnitt	sind BVT 56 und BVT 57 zu entneh-
	sche Reduktion	8.3.	men
	(SCR)	Das SCR wurde angepasst und ist	
		größer als ein SCR-system, das nur	
		für die NO _X -Reduzierung verwendet	
		wird	

Tabelle 38 - BVT-assoziierte Emissionswerte für PCDD/F und TVOC-Emissionen in die Luft, die bei der in Kesseln erfolgenden Verbrennung von 100% Brennstoffen aus Produktionsrückständen aus der chemischen Industrie entstehen

Schadstoff	Anlage	BVT-assoziierte Emissionswerte	
Schauston	Amage	Mittelwert über den Zeitraum der Probenahme	
PCDD/F (1)	ng I-TEC/Nm ³	< 0,012-0,036	
TVOC	mg/Nm ³	0,6-12	

⁽¹⁾ Diese BVT-assoziierten Emissionswerte gelten nur für Anlagen, in denen Brennstoffe verwendet werden, die aus chemischen Prozessen mit Beteiligung chlorierter Stoffe gewonnen wurden.

6. BVT-Schlussfolgerungen für die Abfallmitverbrennung

Wenn nicht anders angegeben, sind die in diesem Abschnitt dargestellten BVT-Schlussfolgerungen allgemein auf die Abfallmitverbrennung in Feuerungsanlagen anwendbar. Sie gelten zusätzlich zu den in Abschnitt 1 aufgeführten allgemeinen BVT-Schlussfolgerungen.

Wird Abfall mitverbrannt, so gelten die in diesem Abschnitt aufgeführten BVTassoziierten Emissionswerte für das gesamte erzeugte Abgasvolumen.

Wird darüber hinaus Abfall gemeinsam mit den unter Abschnitt 2 fallenden Brennstoffen verbrannt, dann gelten die in Abschnitt 2 aufgeführten BVT-assoziierten Emissionswerte auch i) für das gesamte erzeugte Abgasvolumen und ii) für das Abgasvolumen, das bei der Verbrennung der unter den betreffenden Abschnitt fallenden, nach der in Anhang VI Teil 4 zur Richtlinie 2010/75/EU aufgeführten Mischungsformel zubereiteten Brennstoffe entsteht; hierbei sind die BVT-assoziierten Emissions-

werte für das bei der Abfallverbrennung entstehende Abgas auf der Grundlage von BVT 61 zu bestimmen.

6.1.1. Allgemeine Umweltleistung

BVT 60 Die BVT zur Verbesserung der allgemeinen Umweltleistung der Abfallmitverbrennung in Feuerungsanlagen, zur Sicherstellung stabiler Verbrennungsbedingungen und zur Reduzierung von Emissionen in die Luft besteht in der Anwendung der folgenden, in BVT 60 Buchstabe a aufgeführten Technik, einer Kombination der unter BVT 6 aufgeführten Techniken und/oder der weiteren, im Folgenden aufgeführten Techniken.

	Technik	Beschreibung	Anwendbarkeit
a.	Vorabnahme und	Umsetzung eines Verfahrens für die	Allgemein anwendbar
	Abnahme der Abfäl-	Entgegennahme von Abfällen an der	
	le	Feuerungsanlage, das der entspre-	
		chenden BVT aus dem BREF über	
		Abfallbehandlung entspricht. Für	
		kritische Parameter wie den Heiz-	
		wert und den Gehalt an Wasser,	
		Asche, Chlor und Fluor, Schwefel,	
		Stickstoff, PCB, Metallen (flüchtigen	
		(z.B. Hg, Tl, Pb, Co, Se) und nicht	
		flüchtigen Metallen (z.B. V, Cu, Cd,	
		Cr, Ni)), Phosphor und Alkali (beim	
		Einsatz von tierischen Nebenpro-	
		dukten) werden Abnahmekriterien	
		festgelegt.	
		Anwendung von Qualitätssiche-	
		rungssystemen für jede Abfallladung	
		zur Gewährleistung der Merkmale	
		der mitverbrannten Abfälle und	
		Steuerung der Werte definierter	
		kritischer Parameter (z.B. EN 15358	
		für nicht gefährliche, feste Sekun-	
		därbrennstoffe)	

SOFTWARE MIT INHALTEN AUS EINER HAND!

Die rechtliche Vorsorgeuntersuchung für Unternehmen.

Nutzen Sie unsere gespeicherten Erfahrungen aus 26 Jahren Complianceberatung. Wir vermeiden die Haftung für Organisationsverschulden von Führungskräften. Sie müssen organisatorisch dafür sorgen, dass sie sich selbst und dass sich alle Mitarbeiter des Unternehmens legal verhalten. Dazu lassen sich alle Risiken und Pflichten eines Unternehmens mit unserem System ermitteln, delegieren, monatlich aktualisieren, erfüllen, kontrollieren, digital speichern und für alle jederzeit verfügbar halten. Die Verantwortlichen können digital abfragen, wer, welche Pflicht, an welchem Betriebsteil, wie zu erfüllen hat. Führungskräfte können auf einer Oberaufsichtsmaske mit einem Blick kontrollieren, ob alle Pflichten im Unternehmen erfüllt sind. Systematisch senken wir den Complianceaufwand durch Standardisierung um 60 %. Sachverhalte im Unternehmen wiederholen sich, verursachen gleiche Risiken und lösen gleiche Rechtspflichten zur Risikoabwehr aus. Rechtspflichten werden nur einmal geprüft, verlinkt, gespeichert und immer wieder mehrfach genutzt. Wir sind Rechtsanwälte mit eigenen Informatikern und bieten eine Softwarelösung mit Inhalten und präventiver Rechtsberatung aus einer Hand. Auf Anregungen aus den Unternehmen passen unsere EDV-Spezialisten die Software unseres Compliance-Management-Systems an. Der aktuelle Inhalt unserer Datenbank: 18.000 Rechtsvorschriften von EU, Bund, Ländern und Berufsgenossenschaften, 7.500 Gerichtsurteile, standardisierte Pflichtenkataloge für 45 Branchen und 57.000 vorformulierte Betriebspflichten. 44.000 Unternehmensrisiken sind mit 59.000 Rechtspflichten drei Millionen Mal verlinkt und gespeichert. Auf die Inhalte kommt es an. Je umfangreicher die Datenbank umso geringer ist das Risiko eine Unternehmenspflicht zu übersehen.

Weitere Informationen unter: www.rack-rechtsanwälte.de

	Technik	Beschreibung	Anwendbarkeit
b.	Abfallauswahl/-	Sorgfältige Auswahl der Abfallart	Anwendbar innerhalb der Grenzen,
	begrenzung	und des Massenstroms sowie Be-	die durch die Abfallbewirtschaf-
		grenzung des Prozentanteils am	tungspolitik des betreffenden Mit-
		stärksten belasteter Abfälle, die mit-	gliedstaats gesetzt werden
		verbrannt werden können. Begren-	
		zung des Anteils an Asche, Schwe-	
		fel, Fluor, Quecksilber und/oder	
		Chlor in dem in die Feue-	
		rungsanlage eingespeisten Abfall.	
		Begrenzung der Menge an Abfall,	
		die mitverbrannt werden kann	
C.	Vermischen des	Wirkungsvolles Vermischen von	Ein Vermischen ist nur möglich,
	Abfalls mit dem	Abfall und Hauptbrennstoff, weil ein	wenn das Mahlverhalten des Haupt-
	Hauptbrennstoff	heterogener oder schlecht gemisch-	brennstoffs und des Abfalls ähnlich
		ter Brennstoffstrom oder eine un-	sind oder wenn die Abfallmenge im
		gleichmäßige Verteilung die Zün-	Vergleich zum Hauptbrennstoff sehr
		dung und Verbrennung im Kessel	gering ist
		beeinflussen kann und vermieden	
		werden sollte	
d.	Abfalltrocknung	Vortrocknen des Abfalls vor der Ein-	Die Anwendbarkeit kann durch eine
		speisung in die Brennkammer, um	unzureichende Menge rückgewinn-
		eine hohe Kesselleistung aufrecht-	barer Wärme aus dem Prozess, die
		zuerhalten	erforderlichen Verbrennungsbedin-
			gungen oder den Feuchtigkeitsgehalt
			des Abfalls eingeschränkt sein
e.	Abfallvorbehandlung	Siehe die in den BREF für die Ab-	Siehe die Angaben zur Anwendbar-
		fallbehandlung und die Abfallver-	keit im BREF für die Abfallbehand-
		brennung beschriebenen Techniken,	lung und im BREF für die Abfallver-
		u.a. Vermahlung, Pyrolyse und	brennung
		Vergasung	

BVT 61 Die BVT zur Vermeidung erhöhter Emissionen aus der Abfallmitverbrennung in Feuerungsanlagen besteht darin, angemessene Maßnahmen zur Sicherstellung dessen zu treffen, dass die Schadstoffmissionen in dem aus der Abfallmitverbrennung entstehenden Teil der Abgase nicht höher sind als die Emissionen, die sich aus der Anwendung der BVT-Schlussfolgerungen für die Abfallverbrennung ergeben.

BVT 62 Die BVT zur Minimierung der Auswirkungen der Abfallmitverbrennung in Feuerungsanlagen auf das Recycling von Rückständen besteht in der Aufrechterhaltung einer guten Qualität des Gipses, der Aschen und Schlacken sowie anderer

Rückstände entsprechend den Anforderungen, die für das Recycling dieser Stoffe gelten, wenn in der Anlage kein Abfall mitverbrannt wird. Die BVT besteht ferner in der Anwendung einer der unter BVT 60 angegebenen Techniken oder einer Kombination der angegebenen Techniken und/oder der Beschränkung der Mitverbrennung auf Abfallfraktionen mit Schadstoffkonzentrationen, die denen der anderen verbrannten Brennstoffe ähnlich ist.

6.1.2. Energieeffizienz

BVT 63 Die BVT zur Erhöhung der Energieeffizienz der Abfallmitverbrennung besteht in der Anwendung einer geeigneten Kombination der in BVT 12 und der BVT 19 aufgeführten Techniken in Abhängigkeit vom jeweils verwendeten Hauptbrennstoff und der Anlagenkonfiguration.

Die BVT-assoziierten Energieeffizienzwerte für die Mitverbrennung von Abfällen mit Biomasse und/oder Torf sind in Tabelle 8, diejenigen für die Mitverbrennung von Abfällen mit Stein- und/oder Braunkohle in Tabelle 2 aufgeführt.

6.1.3. NO_X- und CO-Emissionen in die Luft

BVT 64 Die BVT zur Vermeidung oder Verringerung von NO_X-Emissionen in die Luft bei gleichzeitiger Begrenzung der CO- und N₂O-Emissionen aus der Mitverbrennung von Abfällen mit Stein- und/oder Braunkohle besteht in der Anwendung einer der Techniken oder einer Kombination der Techniken in BVT 20.

BVT 65 Die BVT zur Vermeidung oder Verringerung von NO_X-Emissionen in die Luft bei gleichzeitiger Begrenzung der CO- und N₂O-Emissionen aus der Mitverbrennung von Abfällen mit Biomasse und/oder Torf besteht in der Anwendung einer der Techniken oder einer Kombination der Techniken in BVT 24.

6.1.4. SO_X-, HCl- und HF-Emissionen in die Luft

BVT 66 Die BVT zur Vermeidung oder Verringerung von SO_X-, HCI- und HF-Emissionen in die Luft, die bei der Mitverbrennung von Abfällen mit Stein- und/oder Braunkohle entstehen, besteht in der Anwendung einer der Techniken oder einer Kombination der Techniken in BVT 21.

BVT 67 Die BVT zur Vermeidung oder Verringerung von SO_{X^-} , HCI- und HF-Emissionen in die Luft, die bei der Mitverbrennung von Abfällen mit Biomasse und/oder Torf entstehen, besteht in der Anwendung einer der Techniken oder einer Kombination der Techniken in BVT 25.

6.1.5. Staub- und partikelgebundene Metallemissionen in die Luft

BVT 68 Die BVT zur Verringerung bei der Mitverbrennung von Abfällen mit Steinund/oder Braunkohle entstehender Emissionen von Staub und partikelgebundenen Metallen in die Luft besteht in der Anwendung einer der Techniken oder einer Kombination der Techniken in BVT 22.

Tabelle 39 - BVT-assoziierte Emissionswerte für Metallemissionen in die Luft, die bei der Mitverbrennung von Abfällen mit Stein- und/oder Braunkohle entstehen

Feuerungswärmeleis-	BVT-assoziierte Emissionswerte		
tung (MW _{th}) der Feue- rungsanlage	Sb+As+Pb+Cr+Co+Cu+ Mn+Ni +V (mg/Nm³)	Cd+TI (µg/Nm³)	Mittelungszeitraum
< 300	0,005-0,5	5-12	Mittelwert über den Zeitraum der Probenahme
≥ 300	0,005-0,2	5-6	Mittelwert der in einem Jahr gewon- nenen Proben

BVT 69 Die BVT zur Verringerung bei der Mitverbrennung von Abfällen mit Biomasse und/oder Torf entstehender Emissionen von Staub und partikelgebundenen Metallen in die Luft besteht in der Anwendung einer der Techniken oder einer Kombination der Techniken in BVT 26

Tabelle 40 - BVT-assoziierte Emissionswerte für Metallemissionen in die Luft, die bei der Mitverbrennung von Abfällen mit Biomasse und/oder Torf entstehen

BVT-assoziierte Emissionswerte (Mittelwert der in einem Jahr gewonnenen Proben)	
Sb+As+Pb+Cr+Co+Cu+Mn+Ni+V (mg/Nm ³)	Cd+TI (µg/Nm³)
0,075-0,3	< 5

6.1.6. Quecksilberemissionen in die Luft

BVT 70 Die BVT zur Verringerung der bei der Mitverbrennung von Abfällen mit Biomasse, Torf, Stein- und/oder Braunkohle entstehenden Quecksilberemissionen in die Luft besteht in der Anwendung einer der Techniken oder einer Kombination der Techniken in BVT 23 und BVT 27.

6.1.7. Emissionen flüchtiger organischer Verbindungen sowie polychlorierter Dibenzodioxine und -furane in die Luft

BVT 71 Die BVT zur Verringerung bei der Mitverbrennung von Abfällen mit Biomasse, Torf, Stein- und/oder Braunkohle entstehenden Emissionen flüchtiger organischer Verbindungen sowie polychlorierter Dibenzodioxine und -furane in die Luft besteht in

der Anwendung einer Kombination der in BVT 6, BVT 26 und im Folgenden angegebenen Techniken.

	Technik	Beschreibung	Anwendbarkeit
a.	Einspritzung von	Siehe die Beschreibung in Abschnitt	Allgemein anwendbar
	Aktivkohle	8.5.	
		Dieses Verfahren beruht auf der Ad-	
		sorption der Schadstoffmoleküle	
		durch die Aktivkohle	
b.	Schroffes Abschre-	Eine Beschreibung von Nasswä-	
	cken unter Einsatz	sche/Abgaskondensator ist Ab-	
	von Nasswä-	schnitt 8.4 zu entnehmen	
	sche/Abgaskondens		
	ator		
C.	Selektive katalyti-	Siehe die Beschreibung in Abschnitt	Siehe in Angaben zur Anwendbarkeit
	sche Reduktion	8.3.	in BVT 20 und BVT 24
	(SCR)	Das SCR wurde angepasst und ist	
		größer als ein SCR-system, das nur	
		für die NO _X -Reduzierung verwendet	
		wird	

Tabelle 41 - BVT-assoziierte Emissionswerte für PCDD/F und TVOC-Emissionen in die Luft, die bei der Mitverbrennung von Abfällen mit Biomasse, Torf, Stein- und/oder Braunkohle entstehen

	BVT-assoziierte Emissionswerte			
Art der Feuerungsanlage	PCDD/F (ng I- TEQ/Nm³)	TVOC (mg/Nm³)		
Art del l'ederdingsamage	Mittelwert über den Zeitraum der Pro- benahme	Jahresmittelwert	Tagesmittelwert	
Mit Biomasse, Torf, Stein- un-	< 0,01-0,03	< 0,1-5	0,5-10	
d/oder Braunkohle befeuerte				
Feuerungsanlage				

7. BVT-Schlussfolgerungen für die Vergasung

Wenn nicht anders angegeben, sind die in diesem Abschnitt dargestellten BVT-Schlussfolgerungen allgemein auf alle unmittelbar mit Feuerungsanlagen und IGCC-Anlagen verbundenen Vergasungsanlagen anwendbar. Sie gelten zusätzlich zu den in Abschnitt 1 aufgeführten allgemeinen BVT-Schlussfolgerungen.

7.1.1. Energieeffizienz

BVT 72 Die BVT zur Erhöhung der Energieeffizienz von IGCC- und Vergasungsanlagen besteht in der Anwendung einer oder einer Kombination der in BVT 12 und im Folgenden aufgeführten Techniken.

	Technik	Beschreibung	Anwendbarkeit
a.	Wärmerückgewin-	Da das Synthesegas für die weitere	Nur auf IGCC- und Vergasungsanla-
	nung aus dem Ver-	Reinigung abgekühlt werden muss,	gen anwendbar, die unmittelbar mit
	gasungsprozess	kann Energie zur Erzeugung zusätz-	Kesseln mit einer Synthesegasvor-
		lichen Dampfes zurückgewonnen	behandlung verbunden sind, die das
		werden, der dann dem Dampfturbi-	Abkühlen des Synthesegases erfor-
		nenzyklus hinzugefügt werden kann	dern
		und damit die Erzeugung zusätzli-	
		cher elektrischer Energie ermöglicht	
b.	Integration von Ver-	Die Anlage kann mit vollständiger In-	Aufgrund der Flexibilität, die bei einer
	gasungs- und Ver-	tegration der Luftversorgungsanlage	integrierten Anlage zur raschen Ver-
	brennungsprozes-	(ASU) und der Gasturbine gestaltet	sorgung des Netzes mit Strom erfor-
	sen	werden, wobei sämtliche der ASU	derlich ist, wenn keine mit erneuer-
		zugeführte Luft aus dem Gasturbi-	baren Energien betriebenen Kraft-
		nenkompressor zugeführt (extra-	werke zur Verfügung stehen, ist die
		hiert) wird	Anwendbarkeit auf IGCC-Anlagen
			beschränkt
c.	Einspeisungssystem	Einsatz eines trockenen Systems für	Nur auf neue Anlagen anwendbar
	für trockene Ein-	die Einspeisung des Brennstoffs in	
	satzstoffe	die Vergasungsanlage zur Verbes-	
		serung der Energieeffizienz des	
		Vergasungsprozesses	
d.	Vergasung bei ho-	Einsatz einer Vergasungstechnik mit	Nur auf neue Anlagen anwendbar
	her Temperatur und	Hochtemperatur- und Hochdruck-	
	hohem Druck	Betriebsparametern zur Maximie-	
		rung der Effizienz der Energieum-	
		wandlung	
e.	Konstruktionsver-	Konstruktionsverbesserungen wie:	Allgemein anwendbar auf IGCC-
	besserungen	- Änderung des Feuerfest-	Anlagen
		und/oder Kühlsystems;	
		- Installation eines Expanders zur	
		Energierückgewinnung aus dem	
		vor der Verbrennung eintreten-	
		den Druckabfall des Synthesega-	
		ses	

SOFTWARE MIT INHALTEN AUS EINER HAND!

Die rechtliche Vorsorgeuntersuchung für Unternehmen.

Nutzen Sie unsere gespeicherten Erfahrungen aus 26 Jahren Complianceberatung. Wir vermeiden die Haftung für Organisationsverschulden von Führungskräften. Sie müssen organisatorisch dafür sorgen, dass sie sich selbst und dass sich alle Mitarbeiter des Unternehmens legal verhalten. Dazu lassen sich alle Risiken und Pflichten eines Unternehmens mit unserem System ermitteln, delegieren, monatlich aktualisieren, erfüllen, kontrollieren, digital speichern und für alle jederzeit verfügbar halten. Die Verantwortlichen können digital abfragen, wer, welche Pflicht, an welchem Betriebsteil, wie zu erfüllen hat. Führungskräfte können auf einer Oberaufsichtsmaske mit einem Blick kontrollieren, ob alle Pflichten im Unternehmen erfüllt sind. Systematisch senken wir den Complianceaufwand durch Standardisierung um 60 %. Sachverhalte im Unternehmen wiederholen sich, verursachen gleiche Risiken und lösen gleiche Rechtspflichten zur Risikoabwehr aus. Rechtspflichten werden nur einmal geprüft, verlinkt, gespeichert und immer wieder mehrfach genutzt. Wir sind Rechtsanwälte mit eigenen Informatikern und bieten eine Softwarelösung mit Inhalten und präventiver Rechtsberatung aus einer Hand. Auf Anregungen aus den Unternehmen passen unsere EDV-Spezialisten die Software unseres Compliance-Management-Systems an. Der aktuelle Inhalt unserer Datenbank: 18.000 Rechtsvorschriften von EU, Bund, Ländern und Berufsgenossenschaften, 7.500 Gerichtsurteile, standardisierte Pflichtenkataloge für 45 Branchen und 57.000 vorformulierte Betriebspflichten. 44.000 Unternehmensrisiken sind mit 59.000 Rechtspflichten drei Millionen Mal verlinkt und gespeichert. Auf die Inhalte kommt es an. Je umfangreicher die Datenbank umso geringer ist das Risiko eine Unternehmenspflicht zu übersehen.

Weitere Informationen unter: www.rack-rechtsanwälte.de

Tabelle 42 - BVT-assoziierte Energieeffizienzwerte für Vergasungs- und IGCC-Anlagen

	BVT-assoziierte Energieeffizienzwerte			
	Elektrischer Nettowir-		Gesamter Nettobrenn-	
Art der Konfiguration der Feuerungs-	kungsgrad	(in %) einer	stoffnutzungsgrad (in %)	
einheit	IGCC-	Anlage	einer neuen oder beste-	
	Nove Anless	Bestehende	henden Vergasungsan-	
	Neue Anlage	Anlage	lage	
Unmittelbar, ohne vorherige Behandlung	Kein BVT-asso	ziierter Ener-	> 98	
des Synthesegases, mit einem Kessel	gieeffizienzwert			
verbundene Vergasungsanlage				
Unmittelbar, mit vorheriger Behandlung	Kein BVT-assoziierter Ener-		> 91	
des Synthesegases, mit einem Kessel	gieeffizienzwer	t		
verbundene Vergasungsanlage				
IGCC-Anlage	Kein BVT-	34-46	> 91	
	assoziierter			
	Energieeffi-			
	zienzwert			

7.1.2. NO_X- und CO-Emissionen in die Luft

BVT 73 Die BVT zur Vermeidung oder Verringerung von in IGCC-Anlagen entstehenden NO_X-Emissionen in die Luft bei gleichzeitiger Begrenzung der CO-Emissionen in die Luft besteht in der Anwendung einer der folgenden Techniken oder einer Kombination der folgenden Techniken.

	Technik	Beschreibung	Anwendbarkeit
a.	Optimierung der	Siehe die Beschreibung in Abschnitt	Allgemein anwendbar
	Verbrennung	8.3	
b.	Hinzufügen von	Siehe die Beschreibung in Abschnitt	Nur auf den Gasturbinenteil der
	Wasser/Dampf	8.3.	IGCC- Anlage anwendbar.
		Zu diesem Zweck wird eine gewisse	Die Anwendbarkeit kann Einschrän-
		Menge an Mitteldruckdampf aus der	kungen im Zusammenhang mit der
		Dampfturbine wiederverwendet	Verfügbarkeit von Wasser unterlie-
			gen

	Technik	Beschreibung	Anwendbarkeit
C.	NO _X -arme Trocken-	Siehe die Beschreibung in Abschnitt	Nur auf den Gasturbinenteil der
	brenner (DLN)	8.3	IGCC-Anlage anwendbar.
			Allgemein anwendbar auf neue
			IGCC-Anlagen.
			Von Fall zu Fall je nach Verfügbar-
			keit eines Umrüstpakets auf beste-
			hende IGCC-Anlagen anwendbar.
			Auf Synthesegas mit einem Wasser-
			stoffgehalt > 15 % nicht anwendbar
d.	Verdünnung des	In der ASU wird Sauerstoff vom	Nur anwendbar, wenn für den Ver-
	Synthesegases mit	Stickstoff in der Luft getrennt, um die	gasungsprozess eine ASU einge-
	überschüssigem	Vergasungsanlage mit hochwerti-	setzt wird
	Stickstoff aus der	gem Sauerstoff versorgen zu kön-	
	Luftversorgungsan-	nen. Der überschüssige Stickstoff	
	lage (ASU)	aus der ASU wird zur Senkung der	
		Verbrennungstemperatur in der	
		Gasturbine genutzt und zu diesem	
		Zweck vor der Verbrennung mit dem	
		Synthesegas gemischt	
e.	Selektive katalyti-	Siehe die Beschreibung in Abschnitt	Nicht anwendbar auf IGCC-Anlagen
	sche Reduktion	8.3	mit < 500 Betriebsstunden pro Jahr.
	(SCR)		Die Umrüstung bestehender IGCC-
			An- lagen unterliegt den Beschrän-
			kungen, die durch den vorhandenen
			Platz gesetzt werden.
			Hinsichtlich der Umrüstung beste-
			hender IGCC-Anlagen mit 500 bis 1
			500 Betriebsstunden pro Jahr kön-
			nen technische und wirtschaftliche
			Einschränkungen bestehen

Tabelle 43 - BVT-assoziierte Emissionswerte für NO_X-Emissionen in die Luft, die in IGCC-Anlagen entstehen

	BVT-assoziierte Emissionswerte (mg/Nm³)			
Feuerungswärmeleistung der IGCC-Anlage (MW _{th})	Jahresmittelwert		Tagesmittelwert oder Mittel- wert über den Zeitraum der Probennahme	
	Neue Anlage	Bestehende Anlage	Neue Anlage	Bestehende Anlage
≥ 100	10-25	12-45	1-35	1-60

Die indikativen Jahresmittelwerte der CO-Emissionen bei bestehenden Anlagen mit ≥ 1 500 Betriebsstunden pro Jahr oder bei neuen Anlagen entsprechen < 5-30 mg/Nm³.

7.1.3. SO_X-Emissionen in die Luft

BVT 74 Die BVT zur Verringerung von in IGCC-Anlagen entstehenden SO_X-Emissionen in die Luft besteht in der Anwendung der folgenden Technik.

	Technik	Beschreibung	Anwendbarkeit
a.	Sauergasabschei-	Schwefelverbindungen aus den Ein-	In Biomasse-IGCC-Anlagen kann die
	dung	satzstoffen für einen Vergasungs-	Anwendbarkeit aufgrund des sehr
		prozess werden mittels Sauergas-	niedrigen Schwefelgehalts von Bio-
		abscheidung aus dem Synthesegas	masse eingeschränkt sein
		entfernt, beispielsweise mittels Auf-	
		nahme eines COS- (und HCN-) Hyd-	
		rolysereaktors und Absorption des	
		H ₂ S mithilfe eines Lösungsmittels	
		wie Methyldiethanolamin. Abhängig	
		von der Marktnachfrage wird Schwe-	
		fel dann entweder als flüssiger oder	
		fester, elementarer Schwefel (z.B.	
		durch eine Claus-Anlage) oder als	
		Schwefelsäure zurückgewonnen	

Der BVT-assoziierte Emissionswert für in IGCC-Anlagen mit \geq 100 MW_{th} entstehenden SO₂-Emissionen in die Luft beträgt 3-16 mg/Nm³, ausgedrückt als Jahresmittelwert.

7.1.4. Emissionen von Staub, partikelgebundenen Metallen, Ammoniak und Halogen in die Luft

BVT 75 Die BVT zur Vermeidung oder Verringerung von in IGCC-Anlagen entstehenden Emissionen von Staub, partikelgebundenen Metallen, Ammoniak und Halogen in die Luft besteht in der Anwendung einer der folgenden Techniken oder einer Kombination der folgenden Techniken.

	Technik	Beschreibung	Anwendbarkeit
a.	Filtrierung des Syn-	Entstaubung unter Einsatz von Flug-	Allgemein anwendbar
	thesegases	aschezyklonen, Gewebefiltern, ESP	
		und/oder Kerzenfiltern zur Abschei-	
		dung von Flugasche und nicht ge-	
		wandeltem Kohlenstoff. Gewebefilter	
		und ESP werden bei Synthesegas-	
		temperaturen bis 400 °C eingesetzt	
b.	Rückführung von	Im rohen Synthesegas erzeugte	
	Teeren und Aschen	Teere und Aschen mit hohem Koh-	
	des Synthesegases	lenstoffgehalt werden in Zyklonen	
	in die Vergasungs-	abgeschieden und in die Verga-	
	anlage	sungsanlage zurückgeführt, sofern	
		die Temperatur des Synthesegases	
		am Ausgang der Vergasungsanlage	
		niedrig ist (< 1 100 °C)	
c.	Waschen des Syn-	Das Synthesegas durchläuft einen	
	thesegases	anderen Entstaubungstechniken	
		nachgelagerten Nasswäscher, in	
		dem Chloride, Ammoniak, Partikel	
		und Halogenide abgeschieden wer-	
		den	

Tabelle 44 - BVT-assoziierte Emissionswerte für in IGCC-Anlagen entstehende Staub- und partikelgebundene Metallemissionen in die Luft

	BVT-assoziie	rte Emissionswerte	
Feuerungswärme- leistung der IGCC- Anlage (MW _{th})	Sb+As+Pb+Cr+Co+Cu+Mn+Ni+V (mg/Nm³) (Mittelwert über den Zeitraum der Probenahme)	Hg (µg/Nm³) (Mittel- wert über den Zeit- raum der Probenah- me)	Staub (mg/Nm³) (Jahresmittel- wert)
≥ 100	< 0,025	< 1	< 2,5

8. Beschreibung von Techniken

8.1. Allgemeine Techniken

Technik	Beschreibung
Modernes Steuerungssys-	Die Nutzung eines rechnergestützten, automatischen Systems zur Rege-
tem	lung der Verbrennungseffizienz und Unterstützung der Vermeidung
	und/oder Verringerung von Emissionen. Dies schließt auch den Einsatz
	der Hochleistungsüberwachung ein.
Optimierung der Verbren-	Maßnahmen zur Maximierung der Effizienz der Energieumwandlung,
nung	beispielsweise in der Feuerung oder im Kessel, bei gleichzeitiger Mini-
	mierung der Emissionen (insbesondere von CO). Dies wird durch eine
	Kombination verschiedener Techniken erreicht, u. a. einer guten Kon-
	struktion der Feuerungsanlage, Optimierung der Temperatur (z.B. effizi-
	ente Mischung von Brennstoff und Verbrennungsluft) und der Verweil-
	dauer in der Verbrennungszone sowie Einsatz eines modernen Steue-
	rungssystems.

8.2. Techniken zur Erhöhung der Energieeffizienz

Technik	Beschreibung
Modernes Steuerungssys-	Siehe Abschnitt 8.1
tem	
KWK-Bereitschaft	Maßnahmen zur Ermöglichung eines künftigen Exports einer nutzbaren
	Wärmemenge in eine außerhalb des Betriebsgeländes befindliche Wär-
	melast in einer Weise, dass eine Senkung des Primärenergieverbrauchs
	um wenigstens 10 % gegenüber der getrennten Erzeugung von Wärme
	und Strom erzielt wird. Dies beinhaltet auch die Ermittlung und Beibehal-
	tung von Zugängen zu bestimmten Stellen im Dampfsystem, an denen
	Dampf abgezogen werden kann. Ferner beinhaltet dies die Bereitstellung
	eines ausreichenden Raumangebots für den späteren Einbau von Vor-
	richtungen wie Rohrleitungen, Wärmetauschern, zusätzlicher Wasser-
	entmineralisierungskapazität, Standby-Kesselanlagen und Gegendruck-
	turbinen. "Balance of Plant"-Systeme (BoP) und Steuerungs-
	/Instrumentierungssysteme sind für die Aufrüstung geeignet. Ein späterer
	Anschluss einer oder mehrerer Gegendruckturbine(n) ist ebenfalls mög-
	lich.

SOFTWARE MIT INHALTEN AUS EINER HAND!

Die rechtliche Vorsorgeuntersuchung für Unternehmen.

Nutzen Sie unsere gespeicherten Erfahrungen aus 26 Jahren Complianceberatung. Wir vermeiden die Haftung für Organisationsverschulden von Führungskräften. Sie müssen organisatorisch dafür sorgen, dass sie sich selbst und dass sich alle Mitarbeiter des Unternehmens legal verhalten. Dazu lassen sich alle Risiken und Pflichten eines Unternehmens mit unserem System ermitteln, delegieren, monatlich aktualisieren, erfüllen, kontrollieren, digital speichern und für alle jederzeit verfügbar halten. Die Verantwortlichen können digital abfragen, wer, welche Pflicht, an welchem Betriebsteil, wie zu erfüllen hat. Führungskräfte können auf einer Oberaufsichtsmaske mit einem Blick kontrollieren, ob alle Pflichten im Unternehmen erfüllt sind. Systematisch senken wir den Complianceaufwand durch Standardisierung um 60 %. Sachverhalte im Unternehmen wiederholen sich, verursachen gleiche Risiken und lösen gleiche Rechtspflichten zur Risikoabwehr aus. Rechtspflichten werden nur einmal geprüft, verlinkt, gespeichert und immer wieder mehrfach genutzt. Wir sind Rechtsanwälte mit eigenen Informatikern und bieten eine Softwarelösung mit Inhalten und präventiver Rechtsberatung aus einer Hand. Auf Anregungen aus den Unternehmen passen unsere EDV-Spezialisten die Software unseres Compliance-Management-Systems an. Der aktuelle Inhalt unserer Datenbank: 18.000 Rechtsvorschriften von EU, Bund, Ländern und Berufsgenossenschaften, 7.500 Gerichtsurteile, standardisierte Pflichtenkataloge für 45 Branchen und 57.000 vorformulierte Betriebspflichten. 44.000 Unternehmensrisiken sind mit 59.000 Rechtspflichten drei Millionen Mal verlinkt und gespeichert. Auf die Inhalte kommt es an. Je umfangreicher die Datenbank umso geringer ist das Risiko eine Unternehmenspflicht zu übersehen.

Weitere Informationen unter: www.rack-rechtsanwälte.de

Technik	Beschreibung
Kombinierter Gas- und	Kombination von zwei oder mehr thermodynamischen Kreisläufen, z.B.
Dampfturbinenprozess	eines Brayton-Kreislaufs (Gasturbine/Verbrennungsmotor) mit einem
	Rankine-Kreis- lauf (Dampfturbine/Kessel) zur Umwandlung des Wärme-
	verlusts aus dem Abgas des ersten Kreislaufs in von einem oder mehre-
	ren anschließenden Kreis- lauf/Kreisläufen nutzbare Energie.
Optimierung der Verbren-	Siehe Abschnitt 8.1
nung	
Abgaskondensator	Ein Wärmetauscher, in dem Wasser durch das Abgas vorgeheizt wird,
	bevor es im Dampfkondensator erhitzt wird. Der im Abgas enthaltene
	Dampf kondensiert durch die Abkühlung durch das Heizwasser. Der Ab-
	gaskondensator wird sowohl zur Erhöhung der Energieeffizienz der Ver-
	brennungseinheit als auch zur Abscheidung von Schadstoffen wie Staub,
	SO _x , HCl und HF aus dem Abgas genutzt.
Managementsystem für	Ein System, das die Zuleitung von als Brennstoff nutzbaren Prozessga-
Prozessgase	sen aus der Eisen- und Stahlherstellung (z.B. Hochofen-, Kokerei-, Kon-
	vertergase) in Feuerungsanlagen ermöglicht, wobei dies von der Verfüg-
	barkeit dieser Brennstoffe und der Art der Feuerungsanlagen in einem
	integrierten Stahlwerk abhängt.
Überkritische Dampfzu-	Nutzung eines Dampfkreislaufs unter Einschluss von Dampf-
stände	Zwischenüberhitzungssystemen, in dem der Dampf Drücke über 220,6
	bar und Temperaturen > 540 °C erreichen kann.
Ultraüberkritische Dampf-	Nutzung eines Dampfkreislaufs unter Einschluss von Dampf-
zustände	Zwischenüberhitzungssystemen, in dem der Dampf Drücke über 250-300
	bar und Temperaturen über 580-600 °C erreichen kann.
Nassschornstein	Konstruktion eines Schornsteins in der Weise, dass der Wasserdampf
	aus dem gesättigten Abgas kondensiert und somit die Verwendung eines
	Abgaszwischenüberhitzers nach der Nass-REA vermieden wird.

8.3. Techniken zur Reduzierung von NOX- und/oder CO-Emissionen in die Luft

Technik	Beschreibung
Modernes Steuerungssys-	Siehe Abschnitt 8.1
tem	
Luftstufung	Die Schaffung mehrerer, durch unterschiedliche Sauerstoffgehalte ge-
	kennzeichnete Verbrennungszonen in der Brennkammer zum Zweck der
	Reduzierung der NO _x -Emissionen und Sicherstellung einer optimierten
	Verbrennung. Die Technik beinhaltet eine Primärverbrennungszone mit
	unterstöchiometrischer Feuerung (d.h. Luftmangel) und einer zweiten (mit
	einem Luftüberschuss betriebenen) Nachverbrennungszone zur Verbes-
	serung der Verbrennung. Bei einigen alten, kleinen Kesseln kann eine
	Verkleinerung der Kapazität erforderlich sein, damit genug Raum für die
	Luftstufung geschaffen wird.
Kombinierte Techniken für	Die Nutzung komplexer, integrierter, emissionsmindernder Techniken zur
die Reduzierung von NO _X	kombinierten Reduzierung von NO _X , SO _X und häufig auch anderen
und SO _X	Schadstoffen aus dem Abgas, beispielsweise mittels Aktivkohle und De-
	SONO _X -Prozessen. Diese Techniken können entweder allein oder in Ver-
	bindung mit anderen Primärtechniken in steinkohlebefeuerten Kesseln
	angewendet werden.
Optimierung der Verbren-	Siehe Abschnitt 8.1
nung	
NO _X -arme Trockenbrenner	Gasturbinenbrenner, bei denen Luft und Brennstoff vor dem Eintritt in die
(DLN)	Verbrennungszone gemischt werden. Durch das Mischen von Luft und
	Brennstoff vor der Verbrennung werden eine homogene Temperaturver-
	teilung und eine niedrigere Flammentemperatur erreicht und somit gerin-
	gere NO _X -Emissionen erzielt.
Abgasrückführung (AGR)	Rückführung eines Teils des Abgases in die Brennkammer, um dort einen
	Teil der frischen Verbrennungsluft zu ersetzen. Dies hat die doppelte
	Wirkung, dass einerseits die Temperatur gesenkt und andererseits der
	O ₂ -Gehalt für die Stickstoffoxidation begrenzt und somit die Erzeugung
	von NO _X eingeschränkt wird. Dies setzt die Zufuhr von Abgas aus dem
	Ofen in die Flamme voraus, damit der Sauerstoffgehalt verringert und
	somit die Temperatur der Flamme gesenkt wird. Der Einsatz spezieller
	Brenner oder anderer Vorrichtungen beruht auf der internen Rückführung
	der Verbrennungsgase, die die Flammenwurzeln kühlen und den Sauer-
	stoffgehalt im heißesten Bereich der Flammen reduzieren.
Brennstoffwahl	Verwendung von Brennstoff mit niedrigem Stickstoffgehalt.

Technik	Beschreibung
Brennstoffstufung	Diese Technik basiert auf der Senkung der Temperatur der Flamme oder
	örtlich begrenzter Heißstellen mittels Schaffung mehrerer Verbrennungs-
	zonen in der Brennkammer, in die unterschiedliche Konzentrationen an
	Brennstoff und Luft eingespritzt werden. Eine Umrüstung kann in kleine-
	ren Anlagen weniger effizient sein als in größeren.
Magerkonzept und moder-	Die Steuerung der Spitzentemperaturen der Flammen unter Magerbedin-
nes Magerkonzept	gungen stellt den primären Ansatz zur Begrenzung der NO _X -Bildung in
	Gasmotoren dar. Durch die Magerverbrennung wird das Verhältnis zwi-
	schen Brennstoff und Luft in den Zonen, in denen NO _x gebildet wird, ge-
	senkt, sodass die Spitzentemperatur der Flammen niedriger als die stöch-
	iometrische adiabatische Flammentemperatur ist und somit die thermi-
	sche NO _X -Bildung reduziert wird. Die Optimierung dieses Konzepts wird
	als "modernes Magerkonzept" bezeichnet.
NO _X -arme Brenner (LNB)	Diese Technik, die auch Ultra- oder moderne NO _X -arme Brenner ein-
	schließt, beruht auf dem Prinzip der Reduzierung der Spitzentemperatur
	der Flammen; Kesselbrenner sind so konstruiert, dass die Verbrennung
	verzögert, aber verbessert und die Wärmeübertragung erhöht wird (er-
	höhte Flammenstrahlung). Durch das Vermischen von Luft und Brennstoff
	wird die Verfügbarkeit von Sauerstoff verringert und die Spitzentempera-
	tur der Flammen gesenkt. Auf diese Weise wird die Umwandlung des
	brennstoffgebundenen Stickstoffs in NO _X und die Bildung von thermi-
	schem NO _X verzögert, dabei aber eine hohe Verbrennungseffizienz auf-
	rechterhalten. Die Technik kann mit einer modifizierten Gestaltung der
	Brennkammer einhergehen. Ultra-NO _X -arme Brenner (ULNB) werden mit
	Verbrennungsstufung (Luft/Brennstoff) und mit Abgasrückführung (interne
	Abgasrückführung) konstruiert. Bei der Umrüstung alter Anlagen kann die
	Leistung dieser Technik durch die Konstruktionsweise des Kessels beein-
	flusst werden.
NO _X -armes Verbren-	Die Technik besteht aus einer Kombination interner Motormodifikationen
nungskonzept bei Gasöl-	wie beispielsweise der Optimierung von Verbrennung und Kraftstoffein-
motoren	spritzung (sehr späte Kraftstoffeinspritzung in Verbindung mit frühzeiti-
	gem Schließen des Lufteinlassventils), Turboladen oder Miller-
	Kreisprozess.
Oxidationskatalysatoren	Der Einsatz von Katalysatoren (die gewöhnlich Edelmetalle wie Palladium
	oder Platin enthalten) zur Oxidierung von Kohlenmonoxid und unver-
	brannten Kohlenwasserstoffen mit Sauerstoff zur Bildung von CO ₂ und
	Wasserdampf.

Technik	Beschreibung
Senkung der Verbren-	Der Einsatz von Verbrennungsluft mit Umgebungstemperatur. Die Ver-
nungslufttemperatur	brennungsluft wird nicht in einem regenerativen Luftvorwärmer vorge-
	wärmt.
Selektive katalytische Re-	Selektive Reduktion von Stickoxiden mit Ammoniak oder Harnstoff in
duktion (SCR)	Gegenwart eines Katalysators. Die Technik beruht auf der Reduktion von
	NO _x zu Stickstoff durch Reaktion mit Ammoniak (in der Regel in wässri-
	ger Lösung) in einem Katalysatorbett bei einer optimalen Betriebstempe-
	ratur von ca. 300450 °C. Es können mehrere Katalysatorschichten ver-
	wendet werden. Eine stärkere NO _X -Reduktion wird durch den Einsatz
	mehrerer Katalysatorschichten erreicht. Die Technik kann modular aus-
	gelegt werden, und zur Bewältigung niedriger Lasten oder eines breiten
	Abgastemperaturfensters können spezielle Katalysatoren und/oder ein
	Vorwärmverfahren eingesetzt werden. "In-duct" oder "Schlupf"-SCR ist
	eine Technik, in der SNCR mit einer nachgelagerten, selektiven katalyti-
	schen Reduktion kombiniert wird, die den Ammoniak-Schlupf aus der
	SNCR-Anlage verringert.
Selektive nichtkatalytische	Selektive Reduktion von Stickoxiden mit Ammoniak oder Harnstoff ohne
Reduktion (SNCR)	Katalysator. Dieses Verfahren beruht auf der Reduktion von NO _X zu
	Stickstoff durch Reaktion mit Ammoniak oder Harnstoff bei hohen Tem-
	peraturen. Zur Erzielung einer optimalen Reaktion wird das Betriebstem-
	peraturfenster zwischen 800 °C und 1 000 °C gehalten.
Hinzufügen von Was-	Wasser oder Dampf werden als Verdünnungsmittel zur Senkung der Ver-
ser/Dampf	brennungstemperatur in Gasturbinen, Motoren oder Kesseln und somit
	Reduzierung der thermischen NO _X -Bildung eingesetzt. Sie werden ent-
	weder vor der Verbrennung mit dem Brennstoff vermischt (Emulgierung,
	Befeuchtung oder Sättigung des Brennstoffes) oder direkt in die Brenn-
	kammer eingespritzt (Wasser-/Dampfeinspritzung).

8.4. Techniken zur Verringerung von SO_X-, HClund/oder HF-Emissionen in die Luft

Technik	Beschreibung
Einspritzung von Sorpti-	Direkte Einspritzung eines trockenen Sorptionsmittels in die Brennkam-
onsmittel in den Kessel	mer oder Hinzufügung von Adsorptionsmitteln auf Magnesium- oder Cal-
(innerhalb der Feuerung	ciumgrundlage in die Wirbelschicht eines Kessels mit Wirbelschichtfeue-
oder des Wirbelschicht-	rung. Die Oberfläche der Partikel des Sorptionsmittels reagiert mit dem
betts)	SO ₂ im Abgas oder im Kessel mit Wirbelschichtfeuerung. Diese Technik
	wird meist in Verbindung mit einer Entstaubungstechnik eingesetzt.

Technik	Beschreibung
Trockenabscheider mit	Abgas aus dem Luftvorwärmer des Kessels tritt unten in den ZWS-
zirkulierender Wirbel-	Absorber ein und strömt durch eine Venturistrecke, in der ein festes Sorp-
schicht (ZWS)	tionsmittel und Wasser getrennt in den Abgasstrom eingespritzt werden,
	senkrecht nach oben. Diese Technik wird meist in Verbindung mit einer
	Entstaubungstechnik eingesetzt.
Kombinierte Techniken für	Siehe Abschnitt 8.3
die Reduzierung von NO _X	
und SO _X	
Kanaleinspritzung des	Einspritzung und Feinverteilung eines trockenen, pulverförmigen Sorpti-
Sorptionsmittels (DSI)	onsmittels in den Abgasstrom. Das Sorptionsmittel (z.B. Natriumcarbonat,
	Natriumbicarbonat, Hydratkalk) reagiert mit sauren Gasen (z.B. den gas-
	förmigen Schwefelverbindungen und HCl) und bildet einen Feststoff, der
	mithilfe von Entstaubungstechniken (Gewebefilter oder elektrostatischem
	Abscheider) abgeschieden wird. DSI wird meist in Verbindung mit einem
	Gewebefilter eingesetzt.
Abgaskondensator	Siehe Abschnitt 8.2
Brennstoffwahl	Verwendung eines Brennstoffes mit niedrigem Schwefel-, Chlor- und/oder
	Fluorgehalt
Managementsystem für	Siehe Abschnitt 8.2
Prozessgase	
Meerwasser-REA	Eine besondere, nicht regenerative Art der Nasswäsche unter Nutzung
	der natürlichen Alkalinität des Meerwassers zur Absorption der säurehal-
	tigen Verbindungen im Abgas. Hierbei ist in der Regel eine vorgeschalte-
	te Entstaubung erforderlich.
Sprühabsorber im Tro-	Eine Suspension/Lösung eines alkalischen Reagens wird in den Ab-
ckenverfahren (SDA)	gasstrom eingespeist und dort verteilt. Der Stoff reagiert mit den gasför-
	migen Schwefelverbindungen und bildet einen Feststoff, der mithilfe von
	Entstaubungstechniken (Gewebefilter oder elektrostatischem Abscheider)
	abgeschieden wird. SDA wird meist in Verbindung mit einem Gewebefilter
	eingesetzt.

SOFTWARE MIT INHALTEN AUS EINER HAND!

Die rechtliche Vorsorgeuntersuchung für Unternehmen.

Nutzen Sie unsere gespeicherten Erfahrungen aus 26 Jahren Complianceberatung. Wir vermeiden die Haftung für Organisationsverschulden von Führungskräften. Sie müssen organisatorisch dafür sorgen, dass sie sich selbst und dass sich alle Mitarbeiter des Unternehmens legal verhalten. Dazu lassen sich alle Risiken und Pflichten eines Unternehmens mit unserem System ermitteln, delegieren, monatlich aktualisieren, erfüllen, kontrollieren, digital speichern und für alle jederzeit verfügbar halten. Die Verantwortlichen können digital abfragen, wer, welche Pflicht, an welchem Betriebsteil, wie zu erfüllen hat. Führungskräfte können auf einer Oberaufsichtsmaske mit einem Blick kontrollieren, ob alle Pflichten im Unternehmen erfüllt sind. Systematisch senken wir den Complianceaufwand durch Standardisierung um 60 %. Sachverhalte im Unternehmen wiederholen sich, verursachen gleiche Risiken und lösen gleiche Rechtspflichten zur Risikoabwehr aus. Rechtspflichten werden nur einmal geprüft, verlinkt, gespeichert und immer wieder mehrfach genutzt. Wir sind Rechtsanwälte mit eigenen Informatikern und bieten eine Softwarelösung mit Inhalten und präventiver Rechtsberatung aus einer Hand. Auf Anregungen aus den Unternehmen passen unsere EDV-Spezialisten die Software unseres Compliance-Management-Systems an. Der aktuelle Inhalt unserer Datenbank: 18.000 Rechtsvorschriften von EU, Bund, Ländern und Berufsgenossenschaften, 7.500 Gerichtsurteile, standardisierte Pflichtenkataloge für 45 Branchen und 57.000 vorformulierte Betriebspflichten. 44.000 Unternehmensrisiken sind mit 59.000 Rechtspflichten drei Millionen Mal verlinkt und gespeichert. Auf die Inhalte kommt es an. Je umfangreicher die Datenbank umso geringer ist das Risiko eine Unternehmenspflicht zu übersehen.

Weitere Informationen unter: www.rack-rechtsanwälte.de

Technik	Beschreibung
Nass-	Waschtechnik oder Kombination von Waschtechniken, mit denen Schwe-
Rauchgasentschwefelung	feloxide durch verschiedene Prozesse, die im Allgemeinen ein alkalisches
(Nass-REA)	Sorptionsmittel zum Auffangen von gasförmigem SO ₂ und seine Um-
	wandlung in Feststoffe beinhalten, aus Abgasen abgeschieden werden.
	Beim Verfahren der Nasswäsche werden gasförmige Verbindungen in
	einer geeigneten Flüssigkeit (Wasser oder alkalische Lösung) gelöst.
	Eine gleichzeitige Abscheidung von Feststoffen und gasförmigen Verbin-
	dungen ist möglich. Im Anschluss an die Nasswäsche sind die Abgase
	mit Wasser gesättigt; vor der Freisetzung der Abgase müssen allerdings
	die Tröpfchen abgetrennt werden. Die durch die Nasswäsche erzeugte
	Flüssigkeit wird anschließend in eine Abwasserbehandlungsanlage gelei-
	tet, in der die nicht löslichen Bestandteile durch Sedimentation oder Filtra-
	tion abgeschieden werden.
Nasswäsche	Einsatz einer Flüssigkeit, normalerweise Wasser oder einer wässrigen
	Lösung, zum Auffangen der säurehaltigen Verbindungen im Abgas mittels
	Absorption.

8.5. Techniken zur Verringerung von Staub- und Metallemissionen, einschließlich Quecksilber und/oder PCDD/F in die Luft

Technik	Beschreibung
Gewebefilter	Schlauch- oder Gewebefilter werden aus durchlässigem, gewebtem oder
	gefilztem Gewebe hergestellt, durch das man Gase passieren lässt, um
	Partikel abzuscheiden. Der Einsatz eines Gewebefilters erfordert die
	Wahl eines für die Merkmale des Abgases und die maximale Betriebs-
	temperatur geeigneten Gewebes.
Einspritzung von Sorpti-	Siehe die allgemeine Beschreibung in Abschnitt 8.4. Hierbei bestehen
onsmittel in den Kessel	indirekte Nutzen in Form einer Verringerung von Staub- und Metallemis-
(innerhalb des Ofens oder	sionen.
Wirbelschichtbetts)	
Einspritzung eines Kohlen-	Absorption von Quecksilber und/oder PCDD/F mithilfe von Kohlenstoff-
stoff-Sorptionsmittels (z.B.	Sorptionsmitteln wie (halogenierter) Aktivkohle mit oder ohne chemische
Aktivkohle oder haloge-	Behandlung. Das Einspritzsystem für das Sorptionsmittel kann durch
nierte Aktivkohle) in das	Hinzufügen eines zusätzlichen Gewebefilters verbessert und erweitert
Abgas	werden.
Trockenes oder halbtro-	Siehe die allgemeine Beschreibung der einzelnen Techniken (d.h. Sprüh-
ckenes REA-System	absorber im Trockenverfahren (SDA), Trockenabscheider mit zirkulieren-
	der Wirbelschicht (ZWS)) in Abschnitt 8.4. Hierbei bestehen indirekte
	Nutzen in Form einer Verringerung von Staub- und Metallemissionen.

Technik	Beschreibung
Elektrostatischer Abschei-	Elektrostatische Abscheider laden Partikel elektrisch auf und trennen
der (ESP)	diese Partikel dann unter der Einwirkung eines elektrischen Feldes ab.
	Elektrostatische Abscheider können unter den unterschiedlichsten An-
	wendungsbedingungen zum Einsatz kommen. Der Wirkungsgrad ist ge-
	wöhnlich von der Anzahl der Felder, der Verweilzeit (Größe), den katalyti-
	schen Eigenschaften und vorgeschalteten Partikelabscheidern abhängig.
	ESP umfassen im Allgemeinen zwei bis fünf Felder. Modernste Hochleis-
	tungs-ESP weisen bis zu sieben Felder auf.
Brennstoffwahl	Verwendung eines Brennstoffs mit niedrigem Asche- oder Metallgehalt
	(z.B. Quecksilber).
Multizyklone	Satz von in einer oder mehreren Einhausungen montierten Systemen zur
	Staubbekämpfung, die sich die Zentrifugalkraft zunutze machen und in
	denen Partikel vom Trägergas getrennt werden.
Verwendung halogenierter	Einspeisen halogenierter Verbindungen (z.B. bromierte Additive) in den
Additive, die dem Brenn-	Ofen zum Zweck der Oxidierung von elementarem Quecksilber in lösliche
stoff hinzugefügt oder in	oder partikelförmige Verbindungen; verbessert die Quecksilberabschei-
den Ofen eingespritzt wer-	dung in nachgelagerten Abgasreinigungssystemen.
den	
Nass-	Siehe die allgemeine Beschreibung in Abschnitt 8.4. Hierbei bestehen
Rauchgasentschwefelung	indirekte Nutzen in Form einer Verringerung von Staub- und Metallemis-
(Nass-REA)	sionen.

8.6. Techniken zur Reduzierung von Emissionen in Gewässer

Technik	Beschreibung
Adsorption auf Aktivkohle	Rückhalten löslicher Schadstoffe auf der Oberfläche fester, hoch poröser
	Partikel (Adsorbens). Zur Adsorption von organischen Verbindungen und
	Quecksilber wird gewöhnlich Aktivkohle verwendet.
Aerobe biologische Be-	Biologische Oxidation gelöster organischer Schadstoffe mit Sauerstoff
handlung	unter Nutzung des Stoffwechsels von Mikroorganismen. In Gegenwart
	von gelöstem Sauerstoff — eingespritzt in Form von Luft oder reinem
	Sauerstoff — werden die organischen Verbindungen in Kohlenstoffdioxid
	und Wasser mineralisiert oder in andere Metaboliten und Biomasse um-
	gewandelt. Unter bestimmten Bedingungen findet auch eine aerobe Nitri-
	fikation statt, bei der Mikroorganismen Ammoniak (NH ₄ ⁺) zu intermediä-
	rem Nitrit (NO ₂ ⁻) oxidieren, das anschließend zu Nitrat (NO ₃ ⁻) weiteroxi-
	diert wird.

Technik	Beschreibung
Anoxische/anaerobe biolo-	Biologische Reduktion von Schadstoffen unter Nutzung des Stoffwech-
gische Behandlung	sels von Mikroorgansimen (z.B. wird Nitrat (NO ₃ -) zu elementarem, gas-
	förmigem Stickstoff reduziert, oxidierte Quecksilberarten zu elementarem
	Quecksilber).
	Die anoxische/anaerobe Behandlung von Abwasser aus Nass-
	Abgasreinigungssystemen erfolgt gewöhnlich in Festfilm-Bioreaktoren mit
	Aktivkohle als Träger.
	Die anoxische/anaerobe biologische Behandlung zum Zweck der Queck-
	silberabscheidung erfolgt in Kombination mit anderen Techniken.
Gerinnung und Flockung	Gerinnung und Flockung werden zur Trennung von Schwebstoffen aus
	Abwasser eingesetzt; sie werden oft in aufeinanderfolgenden Schritten
	durchgeführt. Bei der Gerinnung werden Gerinnungsmittel mit einer der
	Ladung der Schwebstoffe entgegengesetzten Ladung zugesetzt. Bei der
	Flockung werden Polymere zugesetzt, sodass sich Mikroflocken bei einer
	Kollision miteinander verbinden und auf diese Weise größere Flocken
	bilden.
Kristallisation	Abscheidung ionischer Schadstoffe aus Abwasser, indem man diese in
	einem Wirbelschichtprozess auf einem Saatmaterial wie Sand oder Mine-
	ralien kristallisieren lässt.
Filtration	Die Trennung von Feststoffen aus Abwasser mittels Passage durch ein
	poröses Medium. Filtriert wird nach verschiedenen Techniken (wie Sand-
	filtration, Mikrofiltration und Ultrafiltration).
Flotation	Die Trennung fester oder flüssiger Partikel aus Abwasser durch Anbin-
	dung an feine Gasbläschen, gewöhnlich Luftbläschen. Die schwimmen-
	den Partikel sammeln sich an der Wasseroberfläche und werden mit Ab-
	schäumern abgehoben.
Ionenaustausch	Rückhalten ionischer Schadstoffe aus Abwasser und deren Ersetzung
	durch akzeptablere Ionen mit Hilfe eines Ionenaustauschharzes. Die
	Schadstoffe werden vorübergehend zurückgehalten und danach in einer
	Regenerations- oder Rückspülflüssigkeit freigesetzt.
Neutralisation	Anpassung des pH-Werts des Abwassers an den neutralen pH-Wert (et-
	wa 7) durch Zusatz von Chemikalien. Natriumhydroxid (NaOH) oder Cal-
	ciumhydroxid (Ca(OH) ₂) werden im Allgemeinen zur Erhöhung des pH-
	Werts verwendet, Schwefelsäure (H ₂ SO ₄), Salzsäure (HCl) oder Kohlen-
	säure (CO ₂) zu dessen Senkung. Während der Neutralisation kann es zur
	Ausfällung bestimmter Schadstoffe kommen.

Technik	Beschreibung
Öl-/Wassertrennung	Abscheidung freien Öls aus Abwasser mittels Schweretrennung unter
	Einsatz von Geräten wie dem Separator des American Petroleum Institu-
	te, Wellplattenabscheidern oder Parallelplattenabscheidern. An die Öl-
	/Wassertrennung schließt sich normalerweise ein durch Gerin-
	nung/Flockung unterstütztes Flotationsverfahren an. In einigen Fällen
	kann vor der Öl-/Wassertrennung eine Brechung der Emulsion erforder-
	lich werden.
Oxidation	Umwandlung von Schadstoffen in ähnliche, weniger gefährliche und/oder
	leichter abzuscheidende Verbindungen mithilfe chemischer Oxidations-
	mittel. Bei Abwasser aus Nass-Abgasreinigungssystemen kann zur Oxi-
	dierung von Sulfit (SO ₃ ²⁻) in Sulfat (SO ₄ ²⁻) unter Umständen Luft eigesetzt
	werden.
Fällung	Umwandlung gelöster Schadstoffe in unlösliche Verbindungen durch Zu-
	satz chemischer Fällungsmittel. Die so gebildeten festen Niederschläge
	werden anschließend durch Sedimentation, Flotation oder Filtration ab-
	geschieden. Typische, für die Ausfällung von Metallen verwendete Che-
	mikalien sind Kalk, Dolomit, Natriumhydroxid, Natriumcarbonat, Natri-
	umsulfid und Organosulfide. Für die Ausfällung von Sulfaten oder Fluori-
	den werden Calciumsalze (außer Kalk) verwendet.
Sedimentation	Die Trennung von Schwebstoffen durch schwerkraftbedingtes Absetzen.
Stripping	Abscheidung freisetzbarer Schadstoffe (z.B. Ammoniak) aus Abwasser
	durch Kontakt mit einer starken Gasströmung, die die Schadstoffe in die
	Gasphase überführt. Die Schadstoffe werden durch eine nachgelagerte
	Behandlung vom Strippinggas getrennt und können wiederverwendet
	werden.